Skip to main content

Design of a very optimized ultra-wide magnetic band gap photonic crystal device

Abstract

Based on the transfer matrix method, we investigate the features of the photonic crystal embedded according to the third Octonacci generation and composed of quartz and Cold magnetized plasma layers. The outcomes of this study disclose that for the graded photonic crystals, the bandwidth of the OPBG is broadened and tuned by an external magnetic field. In addition, the forbidden frequency region shifts toward the higher frequency side when the magnetic field is null. Moreover, the numerical results show that the applied magnetic field and the chirping of layers thicknesses defined as y = αxβ represent a very efficient tool on optimizing the photonic band gaps. The omnidirectional photonic band gap expands enormously to cover a very wide frequency range. This study paves the way to design compact photonic devices such as tunable sensors, reflectors and communication components.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Aly, A.H., Mohamed, D., Elsayed, H.A., Vigneswaran, D.: Optical properties of new type of superconductor-semiconductor metamaterial photonic crystals. J. Supercond. Nov. Magn 31, 3453–3457 (2018)

    Article  Google Scholar 

  2. Aly, A.H., Ameen, A.A., Vigneswaran, D.: Superconductor nanometallic photonic crystals as a novel smart window for low-temperature applications. J. Supercond. Nov. Magn. 32, 191–197 (2019)

    Article  Google Scholar 

  3. Awasthi, S.K., Panda, R., Shiveshwari, L.: Multichannel tunable filter properties of 1D magnetized ternary plasma photonic crystal in the presence of evanescent wave. Phys. Plasmas. 24, 072111 (2017)

    ADS  Article  Google Scholar 

  4. Awasthi, S.K., Panda, R., Chauhan, P.K., Shiveshwari, L.: Multichannel tunable omnidirectional photonic band gaps of 1D ternary photonic crystal containing magnetized cold plasma. Phys. Plasmas. 25, 052103 (2018)

    ADS  Article  Google Scholar 

  5. Bian, L.A., Liu, P., Li, G.: Design of tunable devices using one dimensional Fibonacci photonic crystals incorporating graphene at terahertz frequencies. Superlattices Microst 98, 522–534 (2016)

    ADS  Article  Google Scholar 

  6. Chang, T.W., Chien, J.R.C., Wu, C.J.: Magnetic-field tunable multichannel filter in a plasma photonic crystal at microwave frequencies. Appl. Opt 55, 943–946 (2016)

    ADS  Article  Google Scholar 

  7. Chaves, F.S., Posada, H.V.: Tuning of transmittance spectrum in a one-dimensional superconductor semiconductor photonic crystal. Physica B Condens. 543, 7–13 (2018)

    ADS  Article  Google Scholar 

  8. Cox, J.D., Singh, M.R., Gumbs, G., Anton, M.A., Carreno, F.: Dipole-dipole interaction between a quantum dot and a graphene nanodisk. Phys. Rev. B. 86, 125452 (2012)

    ADS  Article  Google Scholar 

  9. Dehnavi, Z.N., Askari, H.R., Malekshahi, M., Dorranian, D.: Investigation of tunable omnidirectional band gap in 1D magnetized full plasma photonic crystals. Phys. Plasmas. 24, 093517 (2017)

    ADS  Article  Google Scholar 

  10. Ghaleh, K.J., Garehgeshlagi, F.K., Mazloom, A.A.: Tunability of multichannel optical filter based on magnetized one- dimensional plasma photonic crystal. Phys. Plasmas. 22, 103507 (2015)

    ADS  Article  Google Scholar 

  11. Kong, X.K., Liu, S.B., Zhang, H.F., Li, C.Z.: A novel tunable filter featuring defect mode of the TEwave from one dimensional photonic crystals doped by magnetized plasma. Phys. Plasmas 17, 103506 (2010)

  12. Kong, X.K., Shi, X.Z., Mo, J.J., Fang, Y.T., Chen, X.L., Liu, S.B.: Tunable multichannel absorber composed of graphene and doped periodic structures. Opt. Commun. 383, 391–396 (2017)

    ADS  Article  Google Scholar 

  13. Mahoodzadeh, H., Rezaei, B.: Tunable Bragg defect mode in one-dimensional photonic crystal containing a graphene-embedded defect layer. Appl. Opt 57, 2172–2176 (2018)

    ADS  Article  Google Scholar 

  14. Nayak, C., Aghajamali, A., Alamfard, T., Saha, A.: Tunable photonic band gaps in an extrinsic Octonacci magnetized cold plasma quasicrystal. Physica b. Condens. Matter 525, 41–45 (2017)

    ADS  Article  Google Scholar 

  15. Xue, F., Liu, S.B., Zhang, H.F., Kong, X.K., Wen, Y.D., Wang, L.L., Qian, S.: The theoretical analysis of omnidirectional photonic band gaps in the one dimensional ternary plasma photonic crystals based on Pell quasi- periodic structure. Opt. Quant. Electron 49, 19 (2017)

    Article  Google Scholar 

  16. Zare, Z., Gharaati, A.: Investigation of band gap width in ternary 1D photonic crystal with left-handed layer. ACTA Phys. POL. A. 125, 36–38 (2014)

    ADS  Article  Google Scholar 

  17. Zare, Z., Gharaati, A.: Comparative study of two thermal tunable filters with and without symmetrical linear gradation of thickness. Physica B Condens 553, 105–112 (2019)

    ADS  Article  Google Scholar 

  18. Zhang, S., Zhang, X.: Strong second-harmonic generation from bilayer-graphene embedded in one-dimensional photonic crystals. J. Opt. Soc. Am. B 33, 452–460 (2016)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zina Baraket.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baraket, Z., Kanzari, M. Design of a very optimized ultra-wide magnetic band gap photonic crystal device. Opt Quant Electron 53, 575 (2021). https://doi.org/10.1007/s11082-021-03220-3

Download citation

Keywords

  • Octonacci generation
  • Sensors
  • Tunable devices
  • Communication components