Skip to main content

Effect of chlorine and bromine on the nonlinear optical, electronic, optoelectronic and thermodynamic properties on the BEDT-TTF molecule: ab-initio and DFT calculations

Abstract

In recent years, designing high performance NLO materials is an interesting topic in nonlinear optics. In this work, the influence of hydrogen atoms substitution with chlorine and bromine atoms of BEDT-TTF (\({C}_{10}{H}_{8}{S}_{8}\)) on nonlinear optical, electronic, optoelectronic and thermodynamic properties is investigated by using ab-initio and density functional theory. The proposed materials exhibit good nonlinear optical response. Results obtained with B3LYP/cc-pVDZ method shown a better fit to experimental data than RHF/cc-pVDZ in terms of geometric parameters (bond lengths and bond angles). First and second hyperpolarizabilities (\(\beta\) and \(\gamma\)) values show that the proposed materials have very good optoelectronic and nonlinear optical properties. Energies gap, \({E}_{g}\) show that the molecules may have semi-conductors properties and hence have applications in the field of optoelectronic devices.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Allen, F.H.: The Cambridge structural database: a quarter of a million crystal structures and rising. Acta Cryst. B 58, 380 (2002)

    Article  Google Scholar 

  2. Anu, S., et al.: Density functional theory calculations for electronic, optoelectronic and thermodynamic properties of dibenzothiophene metal complexes. Mater. Res. Express 7, 016311 (2020). https://doi.org/10.1088/2053-1591/ab6922

    ADS  Article  Google Scholar 

  3. Becke, A.D.: Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098–3101 (1988)

    ADS  Article  Google Scholar 

  4. Bouchouit, K., et al.: χ(2) grating in ru derivative chromophores incorporated within the PMMA polymer matrices. J. Phys. Chem. B 108(39), 14942–14947 (2004)

    Article  Google Scholar 

  5. Costa, S.N., et al.: DFT calculations with van der Waals interactions of hydrated calcium carbonate crystals CaCO3·(H2O, 6H2O): structural, electronic, optical, and vibrational properties. J. Phys. Chem. A 120, 5752–5765 (2016)

    Article  Google Scholar 

  6. Demiralp, E., Dasgupta, S., William, A., Goddard, I.I.I.: Electron-transfer boat-vibration mechanism for superconductivity in organic molecules based on BEDT-TTF. J. Am. Chem. Soc. 117, 8154–8158 (1995)

    Article  Google Scholar 

  7. Demiralp, E., Dasgupta, S., William, A., Goddard, I.I.I.: MSX force field and vibrational frequencies for BEDT-TTF (neutral and cation). J. Phys. Chem. A 101, 1975–1981 (1997)

    Article  Google Scholar 

  8. Dennington, R.T., Keith, J.M.: Gauss view, version 6. Semichem Inc, Shawnee Mission (2016)

    Google Scholar 

  9. Ejuh, G.W., Samuel, N., Tchangnwa Nya, F., Ndjaka, J.M.B.: Computational determination of the electronic and nonlinear optical properties of the molecules 2-(4aminophenyl) quinoline, 4-(4-aminophenyl) quinoline, anthracene, anthraquinone and phenanthrene. Mater. Lett. 178, 221–226 (2016). https://doi.org/10.1016/j.matlet.2016.04.097

    Article  Google Scholar 

  10. Ejuh, G.W., Tchangnwa Nya, F., Ottou Abe, M.T., Jean-Baptiste, F.F., Ndjaka, J.M.B.: Electronic structure, physico-chemical, linear and nonlinear optical properties analysis of coronene, 6B-, 6N-, 3B3N-, substituted C24H12 using RHF, B3LYP and wB97XD methods. Opt. Quant. Electron. 49, 382 (2017). https://doi.org/10.1007/s11082-017-1221-2

    Article  Google Scholar 

  11. Ejuh, G.W., Ottou Abe, M.T., Ghislain, T., Ndjaka, J.M.B.: Ab initio and DFT studies on the donor–acceptor molecules1,2,3-trihydroxy-9,10-anthraquinone; 1(methylamino)anthraquinone; 2-phenyl quinoxaline and 2-(4-aminophenyl) quinoxaline. Mater. Focus 7, 37–44 (2018a). https://doi.org/10.1166/mat.2018.1473

    Article  Google Scholar 

  12. Ejuh, G.W., Ottou Abe, M.T., Tchangnwa Nya, F., Ndjaka, J.M.B.: Prediction of electronic structure, dielectric and thermodynamical properties of flurbiprofen by density functional theory calculation. Karbala J. Mod. Sci. 4, 12–20 (2018b)

    Article  Google Scholar 

  13. Ejuh, G.W., et al.: Theoretical study on the electronic, optoelectronic, linear and non linear optical properties and UV–Vis spectrum of coronene and coronene substituted with chlorine. SN Appl. Sci. 2, 1247 (2020). https://doi.org/10.1007/s42452-020-3028-1

    Article  Google Scholar 

  14. El Kouari, Y., et al.: Computations of absorption spectra and nonlinear optical properties of molecules based on anthocyanidin structure. Opt. Quantum Electron. 47(5), 1091–1099 (2015). https://doi.org/10.1007/s11082-014-9965-4

    Article  Google Scholar 

  15. Eldridge, J.E., Homes, C.C., Williams, J.M., Kini, A.M., Wang, H.H.: The assignment of the normal modes of the BEDT-TTF electron-donor molecule using the infrared and raman spectra of several isotopic analogs. Spectrochim. Acta 51A(6), 947–960 (1995)

    ADS  Article  Google Scholar 

  16. Fankam, J.B., Ejuh, G.W., Tchangnwa Nya, F., Ndjaka, J.M.B.: Theoretical investigation of the molecular structure, vibrational spectra, thermodynamic and nonlinear optical properties of 4, 5-dibromo-2, 7dinitro-fluorescein. Opt. Quantum Electron. 52, 292 (2020a). https://doi.org/10.1007/s11082-020-02396-4

    Article  Google Scholar 

  17. Fankam, J.B., Ejuh, G.W., Tchangnwa Nya, F., Ndjaka, J.M.B.: Study of electronic structure, optoelectronics, linear and nonlinear optical properties and chemical descriptors of dibromodinitrofluorescein isomers in gas phase and solvent media using ab initio and DFT methods. Chin. J. Phys. (2020b). https://doi.org/10.1016/j.cjph.2020.05.015

    Article  Google Scholar 

  18. Fonkem, C.C., Ejuh, G.W., Tchangnwa Nya, F., Yossa Kamsi, R.A., Assatse, T., Ndjaka, J.M.B.: A density functional theory (DFT) study of the doping effect on 2-cyano-3-[4 (diphenylamino) phenyl] acrylic acid. Chin. J. Phys. (2019). https://doi.org/10.1016/j.cjph.2019.11.010

    Article  Google Scholar 

  19. Frisch, M.J., et al.: Gaussian 09, revision A 1. Gaussian, Inc., Wallingford CT (2009)

    Google Scholar 

  20. Guionneau, P., Chasseau, D., Judith Howard, A.K., Dayc, P.: Neutral bis(ethylenedithio)tetrathiafulvalene at 100 K. Acta Cryst. C 56, 453–454 (2000)

    Article  Google Scholar 

  21. Imamura, Y., Ten-no, S., Yonemitsu, K., Tanimura, Y.: Structures and electronic phases of the bis(ethylenedithio) tetrathiafulvalene (BEDT-TTF) salts: a theoretical study based on ab initio molecular orbital methods. J. Chem. Phys. 111, 5986 (1999). https://doi.org/10.1063/1.479894

    ADS  Article  Google Scholar 

  22. Kabé, C., Tchangnwa Nya, F., Ejuh, G.W., Ndjaka, J.M.B.: Comparative study of optoelectronic, thermodynamic, linear and nonlinear optical properties of methyl phenalenyl doped to zinc and copper and their applications. J. Mater. Sci. Mater. Electron. 31, 7898–8790 (2020). https://doi.org/10.1007/s10854-020-03328-4

    Article  Google Scholar 

  23. Kozlov, M.E., Pokhodnia, K.I., Yurchenko, A.A.: The assignment of fundamental vibrations of BEDT-TTF and BEDT-TTF-d8. Spectrochim. Acta 43A, 323 (1987)

    ADS  Article  Google Scholar 

  24. Kulyk, B., et al.: Functionalized azo-based iminopyridine rhenium complexes for nonlinear optical performance. Dyes Pigments 145, 256–262 (2017). https://doi.org/10.1016/j.dyepig.2017.06.012

    Article  Google Scholar 

  25. Lee, C., Yang, W., Parr, R.C.: Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev B 37, 3098–3101 (1988)

    Google Scholar 

  26. Liu, R., Zhou, X., Kasmai, H.: Toward understanding the vibrational spectra of BEDT-TTF, a scaled density functional force field approach. Spectrochim. Acta Part A 53, 1241–1256 (1997)

    ADS  Article  Google Scholar 

  27. Midoune, A., Messaoudi, A.: DFT/TD-DFT computational study of the tetrathiafulvalene-1,3-benzothiazole molecule to highlight its structural, electronic, vibrational and non-linear optical properties. C. r. Chim. 23(2), 143–158 (2020). https://doi.org/10.5802/crchim.12

    Article  Google Scholar 

  28. Moreira, E., et al.: Vibrational and thermodynamic properties of orthorhombic CaSnO3 from DFT and DFPT calculations. J. Phys. Chem. Solids 77, 85–91 (2015)

    ADS  Article  Google Scholar 

  29. Muthu, S., Uma Maheswari, J.: Quantum mechanical study and spectroscopic (FT-IR, FT-Raman, 13C, 1H, UV) study first order hyperpolarizability, NBO analysis, HOMO and LUMO analysis of 4-[(4-aminobenzene) sulfonyl] aniline by ab initio HF and density functional method. Spectrochim. Acta Part A 75, 1115–1124 (2002)

    Google Scholar 

  30. Mveme, C.D.D., Tchangnwa Nya, F., Ejuh, G.W., Kamsi, R.A.Y., Ndjaka, J.M.B.: Density functional theory study of optoelectronic, nonlinear optical, piezoelectric and thermodynamic properties of poly (3,4-ethylenedioxythiophene), poly(3,4-ethylenedioxyselenophene) and their derivative. Opt. Quantum Electron. 52, 373 (2020). https://doi.org/10.1007/s11082-020-02492-5

    Article  Google Scholar 

  31. Olinga, M.G.F., Ottou Abe, M.T., Ntieche, Z., Ejuh, G.W., Ndjaka, J.M.B.: Ab initio investigation of nonlinear optical, electronic, and thermodynamic properties of BEDT-TTF molecule: doping with boron. Heliyon (2021). https://doi.org/10.1016/j.heliyon.2021.e07461

    Article  Google Scholar 

  32. Parthasarathi, R., Padmanabhan, J., Elango, M., Subramanian, V., Chattaraj, P.: Intermolecular reactivity through the generalized philicity concept. Chem. Phys. Lett. 394, 225–230 (2004)

    ADS  Article  Google Scholar 

  33. Saji, R.S., Prasana, J.C., Muthu, S., George, J.: Spectroscopic and quantum computational study on naproxen sodium. Spectrochim. Acta Part A Mol. Spectrosc. 226, 117614 (2020)

    Article  Google Scholar 

  34. Shakerzadeh, E., Tahmasebi, E., Biglari, Z.: A quantum chemical study on the remarkable nonlinear optical and electronic characteristics of boron nitride nanoclusters by complexation via lithium atom. J. Mol. Liq. 221, 443–445 (2016)

    Article  Google Scholar 

  35. Sharaoui, Y.B., et al.: Nonlinear optics and surface relief gratings in alkynyl–ruthenium complexes. J. Opt. A Pure Appl. Opt. 11(2), 024005 (2009). https://doi.org/10.1088/1464-4258/11/2/024005

    ADS  Article  Google Scholar 

  36. Spiridon, M.C., et al.: Novel pendant azobenzene/polymer systems for second harmonic generation and optical data storage. Dyes Pigments 114, 24–32 (2015)

    Article  Google Scholar 

  37. Sundaraganesan, N., Illakiamani, S., Meganathan, C., Joshua, B.D.: Vibrational spectroscopy investigation using ab initio and density functional theory analysis on the structure of 3-aminobenzotrifluoride. Spectrochim. Acta Part A 67, 214–224 (2007)

    ADS  Article  Google Scholar 

  38. Tchangnwa Nya, F., Ejuh, G.W., Ndjaka, J.M.B.: Theoretical study of optoelectronic and thermodynamic properties of molecule 4-[2-(2-N, N-dihydroxy amino thiophene)vinyl] benzanamine: influence of hydroxyl position. Mater. Lett. 202, 89–95 (2017)

    Article  Google Scholar 

  39. Veved, A., Ejuh, G.W., Djongyang, N.: Study of the chemical softness, chemical hardness, chemical stability and interaction energy of the piezoelectric composite: (−CH2–CF2−)3/nHfO2. Polym. Bull. (2020). https://doi.org/10.1007/s00289-020-03346-6

    Article  Google Scholar 

  40. Wallis, J.D., Griffiths, J.P.: Substituted BEDT-TTF derivatives: synthesis, chirality, properties and potential applications. J. Mater. Chem. 15, 347–365 (2005). https://doi.org/10.1039/b412561b

    Article  Google Scholar 

  41. Yossa, R.A., Ejuh, K.G.W., Nkounga, P., Ndjaka, J.M.B.: Study of the molecular structure, electronic and chemical properties of Rubescin D molecule. Chin. J. Phys. 60, 104–121 (2020)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. T. Ottou Abe.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mbala, G.F.O., Mveme, C.D.D., Ntieche, Z. et al. Effect of chlorine and bromine on the nonlinear optical, electronic, optoelectronic and thermodynamic properties on the BEDT-TTF molecule: ab-initio and DFT calculations. Opt Quant Electron 53, 576 (2021). https://doi.org/10.1007/s11082-021-03211-4

Download citation

Keywords

  • BEDT-TTF
  • hyperpolarizability
  • Nonlinear optical properties
  • Optoelectronic properties
  • doping