Skip to main content
Log in

Theoretical analysis of CZTS/CZTSSe tandem solar cell

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Kesterite Cu2ZnSn(SxSe1−x)4 has tunable band-gap values in the range 1 to 1.5 eV depending upon the Sulphur/Selenium stoichiometry. We analyze the proposed tandem configuration of kesterite absorber family using SCAPS-1D for device performance. Pure sulphide kesterite Cu2ZnSnS4 (CZTS) of bandgap 1.5 eV is utilized as top cell and a sulpho-selenide Cu2ZnSn(SxSe1−x)4 (CZTSSe) of band-gap 1.1 eV as the bottom cell stacked in a tandem configuration. We utilize the script file capability of SCAPS to simulate the effect of the presence of the top cell on the bottom cell; as the incident spectrum passes though the top cell, a portion of the incident spectrum is filtered out before it reaches the bottom cell. The condition of identical short circuit current (JSC) in the two cells in the tandem is attained by device optimization. We observe that a conservative estimate of two-junction tandem configuration of CZTS could achieve a minimum efficiency of 15%. This study brings out the device configuration of thin film CZTS/CZTSSe multi-junction for enhancing the efficiency of earth abundant CZTS based solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adewoyin, A.D., Olopade, M.A., Chendo, M.: Enhancement of the conversion efficiency of Cu2ZnSnS4 thin film solar cell through the optimization of some device parameters. Optik 133, 122–131 (2017)

    Article  ADS  Google Scholar 

  • Burgelman, M., Nollet, P., Degrave, S.: Modelling polycrystalline semiconductor solar cells. Thin Solid Films 361–362, 527–532 (2000)

    Article  Google Scholar 

  • Chen, S., Walsh, A., Yang, J., Gong, X.G., Sun, L., Yang, P., Chu, J., Wei, S.: Compositional dependence of structural and electronic properties of Cu2ZnSn(S, Se)4 alloys for thin film solar cells. Phys. Rev. B 83, 125201 (2011)

    Article  ADS  Google Scholar 

  • Hironiwa, D., Murata, M., Ashida, N., Tang, Z., Minemoto, T.: Simulation of optimum band-gap grading profile of Cu2ZnSn(S, Se)4 solar cells with different optical and defect properties. Jpn. J. Appl. Phys. 53, 071201 (2014)

    Article  ADS  Google Scholar 

  • Honsberg C. B., Barnett A. M.: Paths to ultra-high efficiency (>50% efficient) photovoltaic devices. In 20th European photovoltaic solar energy conference, 6 – 10 June 2005, Barcelona, Spain, 453–456 (2005)

  • Islam, M.T., Kumar, A., Thakur, A.K.: Defect density control using an intrinsic layer to enhance conversion efficiency in an optimized SnS solar cell. J. Elec. Mater. 50, 3603–3613 (2021)

    Article  ADS  Google Scholar 

  • Kim, K., Gwak, J., Ahn, S.K., Eo, Y., Park, J.H., Cho, J., Kang, M.G., Song, H., Yun, J.H.: Simulations of chalcopyrite/c-Si tandem cells using SCAPS-1D. Sol. Energy 145, 52–58 (2017)

    Article  ADS  Google Scholar 

  • Kumar, A.: Impact of selenium composition variation in CZTS solar cell. Optik 234, 166421 (2021)

    Article  ADS  Google Scholar 

  • Kumar, A.: Efficiency enhancement of CZTS solar cells using structural engineering. Superlattices Microstruct. 153, 106872 (2021)

    Article  Google Scholar 

  • Kumar, A.: Numerical modelling of ion-migration caused hysteresis in perovskite solar cells. Opt. Quant. Electron. 53, 166 (2021c)

    Article  Google Scholar 

  • Kumar, A., Ranjan, P.: Defects signature in VOC characterization of thin-film solar cells. Sol. Energy 220, 35–42 (2021)

    Article  ADS  Google Scholar 

  • Kumar, A., Thakur, A.D.: Design issues for optimum solar cell configuration. AIP Conf. Proc. 1953, 050022 (2018b). https://doi.org/10.1063/1.5032677

    Article  Google Scholar 

  • Kumar, A., Thakur, A.D.: Comprehensive loss modeling in Cu2ZnSnS4 solar cells. Curr. Appl. Phys. 19, 10 (2019)

    Article  Google Scholar 

  • Kumar, A., Ranjan, P.: Impact of light soaking on absorber and buffer layer in thin film solar cells. Appl. Phys. A 126, 397 (2020)

    Article  ADS  Google Scholar 

  • Kumar, A., Thakur, A.D.: Improvement of efficiency in CZTSSe solar cell by using back surface field. IOP Conf. Ser.: Mater. Sci. Eng. 360, 012027 (2018)

    Article  Google Scholar 

  • Kumar, A., Thakur, A.D.: Role of contact work function, back surface field, and conduction bandoffset in Cu2ZnSnS4 solar cell. Jpn. J. Appl. Phys. 57(S3), 08RC05 (2018)

    Article  Google Scholar 

  • Kumar, A., Thakur, A.D.: Impurity photovoltaic and split spectrum for efficiency gain in Cu2ZnSnS4 solar cell. Optik 238, 166783 (2021)

    Article  ADS  Google Scholar 

  • Leea, S., Priceb, K., Park, J.: Quantum efficiency modeling of thin film solar cells under biased conditions with a case study of CZTSSe solar cells. Thin Solid Films 619, 208–213 (2016)

    Article  ADS  Google Scholar 

  • Nishiwaki, S., Siebentritt, S., Walk, P., Ch. Lux-Steiner, M.: A stacked chalcopyrite thin-film tandem solar cell with 12 V open-circuit voltage. Prog. Photovolt: Res. Appl. 11, 243–248 (2003)

    Article  Google Scholar 

  • Patel, M., Ray, A.: Enhancement of output performance of Cu2ZnSnS4 thin film solar cells—a numerical simulation approach and comparison to experiments. Phys. B 407, 4391–4397 (2012)

    Article  ADS  Google Scholar 

  • Sameshima, T., Takenezawa, J., Hasumi, M., Koida, T., Kaneko, T., Karasawa, M., Kondo, M.: Multi junction solar cells stacked with transparent and conductive adhesive. Jpn. J. Appl. Phys. 50(5R), 052301 (2011)

    Article  ADS  Google Scholar 

  • Seyrling, S., Calnan, S., Bücheler, S., Hüpkes, J., Wenger, S., Brémaud, D., Zogg, H., Tiwari, A.N.: CuIn1−xGaxSe2 photovoltaic devices for tandem solar cell application. Thin Solid Films 517, 2411–2414 (2009)

    Article  ADS  Google Scholar 

  • Todorov, T., Gershon, T., Gunawan, O., Sturdevant, C., Guha, S.: Perovskite-kesterite monolithic tandem solar cells with high open-circuit voltage. Appl. Phys. Lett. 105, 173902 (2014)

    Article  ADS  Google Scholar 

  • Tung, V.C., Kim, J., Cote, L.J., Huang, J.: Sticky interconnect for solution-processed tandem solar cells. J. Am. Chem. Soc. 133, 9262–9265 (2011)

    Article  Google Scholar 

  • Vos, A.D.: Detailed balance limit of the efficiency of tandem solar cells. J. Phys. D: Appl. Phys. 13, 839 (1980)

    Article  ADS  Google Scholar 

  • Wadia, C., Paul Alivisatos, A., Kammen, D.M.: Materials availability expands the opportunity for large-scale photovoltaics deployment. Environ. Sci. Technol. 43(6), 2072–2077 (2009)

    Article  ADS  Google Scholar 

  • Wang, W., Winkler, M.T., Gunawan, O., Gokmen, T., Todorov, T.K., Zhu, Y., Mitzi, D.B.: Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Adv. Energy Mater. 4, 1301465 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

Author heartly acknowledges Dr Marc Burgelman for providing SCAPS-1D software package.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atul Kumar.

Ethics declarations

Conflict of interest

Authors declare no competing conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A. Theoretical analysis of CZTS/CZTSSe tandem solar cell. Opt Quant Electron 53, 528 (2021). https://doi.org/10.1007/s11082-021-03183-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03183-5

Keywords

Navigation