Skip to main content
Log in

An ultra-thin multiband terahertz metamaterial absorber and sensing applications

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We propose an ultra-thin multiband terahertz metamaterial absorber, whose thickness is only 3.8 μm. Simulation results show that we can get four narrow absorption peaks with near-perfect absorption in the 4.5 THz-6.0 THz frequency range. The resonance absorption mechanism is interpreted by the electromagnetic field energy distributions at resonance frequency. Moreover, we also analyze the sensing performances of the absorber in the refractive index and the thickness of the analyte. The refractive index and thickness sensitivities of the sensor are 0.471 THz/RIU, 0.4 THz/μm and the FOMs are 8.887RIU−1, 8.163 μm−1,respectively. The absorber has potential applications in photodetector, multi-spectral imaging and biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Bai, J.J., Zhang, S.S., Fan, F., Wang, S.S., Sun, X.D., Miao, Y.P., Chang, S.J.: Tunable broadband THz absorber using vanadium dioxide metamaterials,". Opt. Commun. (2019). https://doi.org/10.1016/j.optcom.2019.07.057

    Article  Google Scholar 

  • Bhattacharyya, S., Ghosh, S., Chaurasiya, D., Srivastava, K.V.: Bandwidth-enhanced dual-band dual-layer polarization-independent ultra-thin metamaterial absorber. Appl. Phys. A-Mater. 118(1), 207–215 (2015)

    Article  ADS  Google Scholar 

  • Cong, L.Q., Tan, S.Y., Yahiaoui, R., Yan, F.P., Zhang, W.L., Singh, R.: Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: a comparison with the metasurfaces. Appl. Phys. Lett. 106(3), 5 (2015)

    Article  Google Scholar 

  • Dayal, G., Ramakrishna, S.A.: Design of multi-band metamaterial perfect absorbers with stacked metal-dielectric disks. J Opt. UK (2013). https://doi.org/10.1088/2040-8978/15/5/055106

    Article  Google Scholar 

  • Dayal, G., Ramakrishna, S.A.: Multipolar localized resonances for multi-band metamaterial perfect absorbers. J Opt. UK 16(9), 6 (2014)

    Google Scholar 

  • Deng, G.S., Xia, T.Y., Yang, J., Yin, Z.P.: Triple-band polarisation-independent metamaterial absorber at mm wave frequency band. IET Microw. Antenna Propag. 12(7), 1120–1125 (2018)

    Article  Google Scholar 

  • Diem, M., Koschny, T., Soukoulis, C.M.: Wide-angle perfect absorber/thermal emitter in the terahertz regime. Phys. Rev. B (2009). https://doi.org/10.1103/PhysRevB.79.033101

    Article  Google Scholar 

  • Fardoost, A., Vanani, F.G., Amirhosseini, A., Safian, R.: Design of a multilayer graphene-based ultrawideband terahertz absorber. IEEE Trans. Nanotechnol. 16(1), 68–74 (2017)

    Google Scholar 

  • Grant, J., McCrindle, I.J.H., Li, C., Cumming, D.R.S.: Multispectral metamaterial absorber. Opt. Lett. 39(5), 1227–1230 (2014)

    Article  ADS  Google Scholar 

  • Guddala, S., Kumar, R., Ramakrishna, S.A.: Thermally induced nonlinear optical absorption in metamaterial perfect absorbers. Appl. Phys. Lett. 106(11), 5 (2015)

    Article  Google Scholar 

  • Guo, S.J., Hu, C.X., Zhang, H.F.: Unidirectional ultrabroadband and wide-angle absorption in graphene-embedded photonic crystals with the cascading structure comprising the Octonacci sequence. J. Opt. Soc. Am. B-Opt. Phys. 37(9), 2678–2687 (2020)

    Article  ADS  Google Scholar 

  • Jauregui-Lopez, I., Rodriguez-Ulibarri, P., Urrutia, A., Kuznetsov, S.A., Beruete, M.: Labyrinth metasurface absorber for ultra-high-sensitivity terahertz thin film sensing. Phys. Status Solidi-Rapid Res. Lett. 12(10), 7 (2018)

    Article  Google Scholar 

  • Li, J., Chen, X., Yi, Z., Yang, H., Tang, Y., Yi, Y., Yao, W., Wang, J., Yi, Y.: Broadband solar energy absorber based on monolayer molybdenum disulfide using tungsten elliptical arrays. Mater. Today Energy (2020). https://doi.org/10.1016/j.mtener.2020.100390

    Article  Google Scholar 

  • Liao, Y.-L., Zhao, Y.: A wide-angle broadband polarization-dependent absorber with stacked metal-dielectric grating. Opt. Commun. (2019). https://doi.org/10.1016/j.optcom.2016.03.033

    Article  Google Scholar 

  • Liu, N., Mesch, M., Weiss, T., Hentschel, M., Giessen, H.: Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 10(7), 2342–2348 (2010)

    Article  ADS  Google Scholar 

  • Liu, S., Zhuge, J., Ma, S., Chen, H., Bao, D., He, Q., Zhou, L., Cui, T.J.: A bi-layered quad-band metamaterial absorber at terahertz frequencies. J. Appl. Phys. (2015). https://doi.org/10.1063/1.4938110

    Article  Google Scholar 

  • Liu, Z., Guo, L., Zhang, Q.: Design of dual-band terahertz perfect metamaterial absorber based on circuit theory. Molecules (basel, Switzerland) (2020a). https://doi.org/10.3390/molecules25184104

    Article  Google Scholar 

  • Liu, L., Liu, W., Song, Z.: Ultra-broadband terahertz absorber based on a multilayer graphene metamaterial. J. Appl. Phys. (2020b). https://doi.org/10.1063/5.0019902

    Article  Google Scholar 

  • Lu, X., Wan, R., Zhang, T.: Metal-dielectric-metal based narrow band absorber for sensing applications. Opt. Express 23(23), 29842–29847 (2015)

    Article  ADS  Google Scholar 

  • Ma, Y., Chen, Q., Grant, J., Saha, S.C., Khalid, A., Cumming, D.R.S.: A terahertz polarization insensitive dual band metamaterial absorber. Opt. Lett. 36(6), 945–947 (2011)

    Article  ADS  Google Scholar 

  • Meng, L.J., Zhao, D., Ruan, Z.C., Li, Q., Yang, Y.Q., Qiu, M.: Optimized grating as an ultra-narrow band absorber or plasmonic sensor. Opt. Lett. 39(5), 1137–1140 (2014)

    Article  ADS  Google Scholar 

  • Mittendorff, M., Winnerl, S., Kamann, J., Eroms, J., Weiss, D., Schneider, H., Helm, M.: Ultrafast graphene-based broadband THz detector,". Appl. Phys. Lett. (2013). https://doi.org/10.1063/1.4813621

    Article  Google Scholar 

  • Nagatsuma, T., Ducournau, G., Renaud, C.C.: Advances in terahertz communications accelerated by photonics. Nat. Photonics 10(6), 371–379 (2016)

    Article  ADS  Google Scholar 

  • Nielsen, M.G., Pors, A., Albrektsen, O., Bozhevolnyi, S.I.: Efficient absorption of visible radiation by gap plasmon resonators. Opt. Express 20(12), 13311–13319 (2012)

    Article  ADS  Google Scholar 

  • Shen, X.P., Cui, T.J., Zhao, J.M., Ma, H.F., Jiang, W.X., Li, H.: Polarization-independent wide-angle triple-band metamaterial absorber. Opt. Express 19(10), 9401–9407 (2011)

    Article  ADS  Google Scholar 

  • Shi, L., Shang, J., Liu, Z., Li, Y., Fu, G., Liu, X., Pan, P., Luo, H., Liu, G.: Ultra-narrow multi-band polarization-insensitive plasmonic perfect absorber for sensing. Nanotechnology (2020). https://doi.org/10.1088/1361-6528/abad60

    Article  Google Scholar 

  • Smith, D.R., Vier, D.C., Koschny, T., Soukoulis, C.M.: Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys. Rev. E (2002). https://doi.org/10.1103/PhysRevE.71.036617

    Article  Google Scholar 

  • Tao, H., Landy, N.I., Bingham, C.M., Zhang, X., Averitt, R.D., Padilla, W.J.: A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Opt. Express 16(10), 7181–7188 (2008)

    Article  ADS  Google Scholar 

  • Theofanopoulos, P.C., Sakr, M., Trichopoulos, G.C.: Multistatic terahertz imaging using the radon transform. IEEE Trans. Antennas Propag. 67(4), 2700–2709 (2019)

    Article  ADS  Google Scholar 

  • Torabi, E.S., Fallahi, A., Yahaghi, A.: Evolutionary optimization of graphene-metal metasurfaces for tunable broadband terahertz absorption. IEEE Trans. Antennas Propag. 65(3), 1464–1467 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  • Wang, B.X., Zhai, X., Wang, G.Z., Huang, W.Q., Wang, L.L.: A novel dual-band terahertz metamaterial absorber for a sensor application. J. Appl. Phys. (2015a). https://doi.org/10.1063/1.4905261

    Article  Google Scholar 

  • Wang, B.X., Zhai, X., Wang, G.Z., Huang, W.Q., Wang, L.L.: Design of a four-band and polarization-insensitive terahertz metamaterial absorber. IEEE Photon. J. 7(1), 8 (2015b)

    Google Scholar 

  • Wang, Y., Song, M., Pu, M., Gu, Y., Hu, C., Zhao, Z., Wang, C., Yu, H., Luo, X.: Staked graphene for tunable terahertz absorber with customized bandwidth. Plasmonics 11(5), 1201–1206 (2016)

    Article  Google Scholar 

  • Wang, J., Lang, T., Hong, Z., Shen, T., Wang, G.: Tunable terahertz metamaterial absorber based on electricity and light modulation modes. Opt. Mater. Express 10(9), 2262–2273 (2020)

    Article  ADS  Google Scholar 

  • Watts, C.M., Liu, X., Padilla, W.J.: Metamaterial electromagnetic wave absorbers. Adv. Mater. 24(23), 98–120 (2012)

    Google Scholar 

  • Xiao, B.G., Gu, M.Y., Xiao, S.S.: Broadband, wide-angle and tunable terahertz absorber based on cross-shaped graphene arrays. Appl. Opt. 56(19), 5458–5462 (2017)

    Article  ADS  Google Scholar 

  • Xie, Q., Dong, G.X., Wang, B.X., Huang, W.Q.: Design of quad-band terahertz metamaterial absorber using a perforated rectangular resonator for sensing applications. Nanoscale Res. Lett. (2018). https://doi.org/10.1186/s11671-018-2567-5

    Article  Google Scholar 

  • Yahiaoui, R., Tan, S.Y., Cong, L.Q., Singh, R., Yan, F.P., Zhang, W.L.: Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber. J. Appl. Phys. 118(8), 6 (2015)

    Article  Google Scholar 

  • Yang, X., Zhao, X., Yang, K., Liu, Y.P., Liu, Y., Fu, W.L., Luo, Y.: Biomedical applications of terahertz spectroscopy and imaging. Trends Biotechnol. 34(10), 810–824 (2016)

    Article  Google Scholar 

  • Zhang, B., Guo, J.: Optical properties of a two-dimensional nanodisk array with super-lattice defects. J. Opt. Soc. Am. B 30(11), 3011–3017 (2013)

    Article  ADS  Google Scholar 

  • Zhang, H.F., Zhang, H., Yao, Y., Yang, J., Liu, J.X.: A band enhanced plasma metamaterial absorber based on triangular ring-shaped resonators. IEEE Photonics J. 10(4), 10 (2018)

    Google Scholar 

  • Zhang, H., Ma, Y., Zhang, H.F., Yang, J., Liu, J.X.: A Band enhanced tunable ultra-broadband absorber based on loading the lumped resistors and cavity resonance. Plasmonics 14(3), 755–762 (2019)

    Article  Google Scholar 

  • Zhou, Z., Zhou, T., Zhang, S., Shi, Z., Chen, Y., Wan, W., Li, X., Chen, X., Corder, S.N.G., Fu, Z., Chen, L., Mao, Y., Cao, J., Omenetto, F.G., Liu, M., Li, H., Tao, T.H.: Multicolor T-ray imaging using multispectral metamaterials. Adv. Sci. (2018). https://doi.org/10.1002/advs.201700982

    Article  Google Scholar 

  • Zhu, J.F., Ma, Z.F., Sun, W.J., Ding, F., He, Q., Zhou, L., Ma, Y.G.: Ultra-broadband terahertz metamaterial absorber. Appl. Phys. Lett. 105(2), 021102 (2014). https://doi.org/10.1063/1.4889890

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Education Commission Research Project of Tianjin (Grant No. 2018KJ213).

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Jinjun Bai, Wei Shen, Shasha Wang, Meilan Ge, Tingting Chen, Pengyan Shen and Shengjiang Chang. The first draft of the manuscript was written by Wei Shen and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jinjun Bai or Shasha Wang.

Ethics declarations

Conflict of interest

The authors have no financial or proprietary interests in any material discussed in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, J., Shen, W., Wang, S. et al. An ultra-thin multiband terahertz metamaterial absorber and sensing applications. Opt Quant Electron 53, 506 (2021). https://doi.org/10.1007/s11082-021-03180-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03180-8

Keywords

Navigation