Skip to main content
Log in

Design of a new multiplexer structure based on a new fault-tolerant majority gate in quantum-dot cellular automata

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Quantum-dot cellular automata (QCA) technology is believed to be a good alternative to CMOS technology. This nanoscale technology can provide a platform for design and implementation of high performance and power efficient logic circuits. However, the fabrication of QCA circuits is susceptible to faults appearing in this form of missing cells, additional cells, rotated cells and displaced cells. Over the years, several solutions have been proposed to address these problems. This paper presents a new solution for improving the fault tolerance of three input majority gate. The proposed majority gate is then used to design 2-1 multiplexer and 4-1 multiplexer. The proposed designs are implemented in QCA Designer. Simulation results demonstrate significant improvements in terms of fault tolerance and area requirement. The proposed gate consists of 11 cells and requires an area of 0.0096 μm2. The proposed design has 100% tolerance to the fault of a single missing cell and 71.43% tolerance to the rotation of one cell. The proposed 2-1 multiplexer consists of 41 cells and requires an area of 0.066 μm2. This multiplexer has 95.24% tolerance to the fault of a single missing cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Afrooz, S., Navimipour, N.J.: Memory designing using quantum-dot cellular automata: systematic literature review classification and current trends. J Circuits Syst Comput 26(12), 1730004 (2017). https://doi.org/10.1142/S0218126617300045

    Article  Google Scholar 

  • Ahmadpour, S.S., Mosleh, M.: A novel fault-tolerant multiplexer in quantum-dot cellular automata technology. J. Supercomput. 74(9), 4696–4716 (2018)

    Article  Google Scholar 

  • Ahmed, S., Naz, S.F.: Design of quantum dot cellular automata based fault tolerant convolution encoders for secure nanocomputing. Int. J. Quantum Inf. 18(6), 2050032 (2020). https://doi.org/10.1142/S021974992050032X

    Article  MathSciNet  MATH  Google Scholar 

  • Babaie, S., Sadoghifar, A., Bahar, A.N.: Design of an Efficient Multilayer Arithmetic Logic Unit in Quantum-Dot Cellular Automata (QCA). IEEE Trans. Circuits Syst. II: Express Br. 66(6), 963–967 (2018). https://doi.org/10.1109/TCSII.2018.2873797

  • Beard MJ. Design and simulation of fault-tolerant quantum-dot cellular automata (QCA) NOT gates. Dissertation, Wichita State University, 2006.

  • Bilal, B., Ahmed, S., Kakkar, V.: Modular adder designs using optimal reversible and fault tolerant gates in field-coupled QCA nanocomputing. Int. J. Theor. Physics 57(5), 1356–1375 (2018). https://doi.org/10.1007/s10773-018-3664-z

    Article  MathSciNet  MATH  Google Scholar 

  • Chandra, Jangam Siva, Suresh, Kandula, Ghosh, Bahniman: Clocking Scheme Implementation for Multi-Layered Quantum Dot Cellular Automata Design. Journal of Low Power Electronics. 10(2), 272–278 (2014)

    Article  Google Scholar 

  • Compano R,Molenkamp L, Paul D. Roadmap for nanoelectronics. In: Future and Emerging Technologies: European Commission IST Programme; 2000.

  • Das, K., De, D.: QCA defect and fault analysis of diverse nanostructure for implementing logic gate. International journal of recent trends in Eng Technol 3(1), 84–97 (2010)

    Google Scholar 

  • Du, H., et al.: Design and analysis of new fault-tolerant majority gate for quantum-dot cellular automata. J Comput Electron 15(4), 1484–1497 (2016)

    Article  Google Scholar 

  • Dysart TJ, M Kogge P, S Lent C. An analysis of missing cell defects in quantum-dot cellular automata, 2017.

  • Fam, S.R., Navimipour, N.J.: Design of a loop-based random access memory based on the nanoscale quantum dot cellular automata. Photonic Netw. Commun. 37(1), 120–130 (2019). https://doi.org/10.1007/s11107-018-0801-9

    Article  Google Scholar 

  • Hasani, B., Navimipour, N.J.: A new design of a carry-save adder based on quantum-dot cellular automata. Iran. J. Sci. Technol. Trans. Electr. Eng. 45(3), 993–999 (2021). https://doi.org/10.1007/s40998-020-00395-5

    Article  Google Scholar 

  • Hashemi, S., Tehrani, M., Navi, K.: An efficient quantum-dot cellular automata full-adder. Sci. Res. Essays 7(2), 177–189 (2012)

    Google Scholar 

  • Heikalabad, S.R.: Non-coplanar counter in quantum-dot cellular automata. European Phys. J. Plus 136(2) (2021). https://doi.org/10.1140/epjp/s13360-021-01198-1

  • Heikalabad, R.S., Gadim, M.R.: Design of improved arithmetic logic unit in quantum-dot cellular automata. Int. J. Theor. Phys. 57(6), 1733–1747 (2018). https://doi.org/10.1007/s10773-018-3699-1

    Article  MathSciNet  MATH  Google Scholar 

  • Heikalabad, S.R., Salimzadeh, F., Barughi, Y.Z.: A unique three-layer full adder in quantum-dot cellular automata. Comput. Electr. Eng. 86, 106735 (2020). https://doi.org/10.1016/j.compeleceng.2020.106735

    Article  Google Scholar 

  • Hosseinzadeh, H.: Saeed Rasouli Heikalabad. A Novel Fault Tolerant Majority Gate in Quantum-Dot Cellular Automata to Create a Revolution in Design of Fault Tolerant Nanostructures, with Physical Verification, Microelectronic Engineering 192, 52–60 (2018)

    Google Scholar 

  • Huakun Du, Hongjun Lv, Yongqiang Zhang, Fei Peng, Guangjun Xie. "Design and analysis of new fault-tolerant majority gate for quantum-dot cellular automata," J Comput Electron, 2016.

  • Huang, J., Momenzadeh, M., Lombardi, F.: On the tolerance to manufacturing defects in molecular QCA tiles for processing-by-wire. J. Electron. Test. 23(2–3), 163–174 (2007). https://doi.org/10.1007/s10836-006-0548-6

    Article  Google Scholar 

  • Karim, F., Walus, K.: Efficient simulation of correlated dynamics in quantum-dot cellular automata (QCA). IEEE Trans. Nanotechnol. 13(2), 294–307 (2014)

    Article  ADS  Google Scholar 

  • Kumar, D., Mitra, D.: Design of a practical fault-tolerant adder in quantumdot cellular automata. Microelectron. J. 53, 90–104 (2016)

    Article  Google Scholar 

  • Lent, C.S., Tougaw, P.D.: A device architecture for computing with quantum dots. Proc IEEE 85(4), 541–557 (1997)

    Article  Google Scholar 

  • Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology 4, 49–57 (1993)

    Article  ADS  Google Scholar 

  • Meirav, U., Kastner, M.A., Wind, S.J.: Singleelectron charging and periodic conductance resonances in GaAs nanostructures. Phys. Rev. Lett. 65(6), 771–774 (1990)

    Article  ADS  Google Scholar 

  • Moghimizadeh T., Mosleh M., A novel design of fault tolerant RAM cell in quantum‑dot cellular automata with physical verification, The Journal of Supercomputing, 2019.

  • Mohammadi, M., Gorigin, S.: An efficient design of full adder in quantum-dot cellular automata technology. Microelectron. J. 50, 38–43 (2016)

    Article  Google Scholar 

  • Momenzadeh M, Ottavi M, Lombardi F. Modeling QCA defects at molecular-level in combinational circuits. In: 20th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, 2005. DFT 2005.

  • Norouzi, A., Heikalabad, S.R.: Design of reversible parity generator and checker for the implementation of nano-communication systems in quantum-dot cellular automata. Photonic Netw. Commun. 38(2):231–243 (2019). https://doi.org/10.1007/s11107-019-00850-2

    Article  Google Scholar 

  • Norouzi, M., Heikalabad, S.R., Salimzadeh F.: A reversible ALU using HNG and Ferdkin gates in QCA nanotechnology. Int. J. Circuit Theory Appl. 48(8), 1291–1303 (2020). https://doi.org/10.1002/cta.2799

    Article  Google Scholar 

  • Nuriddin S., Jun-C. j., A novel controllable inverter and adder/subtractor in quantum-dot cellular automata using cell interaction based XOR gate, Microelectronic Engineering, Vol. 222, 2020, 111197.

  • Rahimpour Gadim, M., Jafari Navimipour, N.: A new three-level fault tolerance arithmetic and logic unit based on quantum dot cellular automata. Microsyst. Technol. 24(2), 1295–1305 (2018). https://doi.org/10.1007/s00542-017-3502-x

    Article  Google Scholar 

  • Rahmani, Y., Heikalabad, S.R., Mosleh, M.: Efficient structures for fault-tolerant majority gate in quantum-dot cellular automata. Opt. Quant. Electron. 53, 45 (2021)

    Article  Google Scholar 

  • Raj, M., Ahmed, S., Gopalakrishnan, L.: Subtractor circuits using different wire crossing techniques in quantum-dot cellular automata. J Nanophotonics 14(2), 1 (2020). https://doi.org/10.1117/1.JNP.14.026007

    Article  Google Scholar 

  • Rasouli Heikalabad, S., Ahmadi, R., Salimzadeh, F.: Introducing a full-adder structure for finite field in QCA. ECS J. Solid State. Sci. Technol. 10(6), 063006 (2021). https://doi.org/10.1149/2162-8777/ac08d9

    Article  ADS  Google Scholar 

  • Reed, M.A., Randall, J.N., Aggarwal, R.J., Matyi, R.J., Moore, T.M., Wetsel, A.E.: Observation of discrete electronic states in a zero-dimensional semiconductor nanostructure. Phys. Rev. Lett. 60, 535–539 (1988)

    Article  ADS  Google Scholar 

  • Roohi, A., Sayedsalehi, S., Khademolhosseini, H., Navi, K.: Design and evaluation of a reconfigurable fault tolerant quantum-dot cellular automata gate. J. Comput. Theor. Nanosci. 10, 380–388 (2013)

    Article  Google Scholar 

  • Roohi, A., DeMara, R.F., Khoshavi, N.: Design and evaluation of an ultra-area-efficient faulttolerant QCA full adder. Microelectron. J. 46(6), 531–542 (2015)

    Article  Google Scholar 

  • Safoev, N., Ahmed, S., Tashev, K., Naz, S.F.: Design of fault tolerant bifunctional parity generator and scalable code converters based on QCA technology. Int. J. Inf. Tecnol. (2021). https://doi.org/10.1007/s41870-021-00730-x

  • Salimzadeh, F., Heikalabad, S.R.: Design of a novel reversible structure for full adder/subtractor in quantum-dot cellular automata. Phys. B: Condens. Matter 556, 163–169 (2019). https://doi.org/10.1016/j.physb.2018.12.028

    Article  ADS  Google Scholar 

  • Salimzadeh, F., Heikalabad, S.R.: A full adder structure with a unique XNOR gate based on Coulomb interaction in QCA nanotechnology. Opt. Quantum Electron. 53(8) (2021). https://doi.org/10.1007/s11082-021-03127-z

  • Salimzadeh, F., Safarpoor, E., Rasouli Heikalabad, S.: Designing and implementing a fault-tolerant priority encoder in QCA nanotechnology. ECS J. Solid. State Sci. Technol. 10(6), 063004 (2021). https://doi.org/10.1149/2162-8777/ac0118

    Article  ADS  Google Scholar 

  • Sen, B., Rajoria, A., Sikdar, B.K.: Design of Efficient full adder in quantum-dot cellular automata. Sci. World J. 2013, 10–25 (2013)

    Article  Google Scholar 

  • Sen, B., et al.: Modular Design of testable reversible ALU by QCA multiplexer with increase in programmability. Microelectron. J (2014). https://doi.org/10.1016/j.mejo.2014.08.012i

    Article  Google Scholar 

  • Sen, B., Sahu, Y., Mukherjee, R., Nath, R.K., Sikdar, B.K.: On the reliability of majority logic structure in quantum-dot cellular automata. Microelectron. J. 47, 7–18 (2016a)

    Article  Google Scholar 

  • Sen, B., Dutta, M., Mukherjee, R., et al.: Towards the design of hybrid QCA tiles targeting high fault tolerance. J. Comput. Electron. 15(2), 429–445 (2016b)

    Article  Google Scholar 

  • Sun, M., Lv, H., Zhang, Y., Xie, G.: The Fundamental Primitives with Fault-Tolerance in Quantum-Dot Cellular Automata. J. Electron. Test. 34(2), 109–122 (2018)

    Article  Google Scholar 

  • Toth, G., Lent, C.S.: Quasiadiabatic switching for metal-island quantum-dot cellular automata. J Appl Phys. 85(5), 2977–2984 (1999)

    Article  ADS  Google Scholar 

  • Tougaw, P.D., Lent, C.S.: Logical devices implemented using quantum cellular automata. J Appl Phys 75(3), 1818–1825 (1994)

    Article  ADS  Google Scholar 

  • Walus, K., et al.: QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans Nanotechnol 3(1), 26–31 (2004)

    Article  ADS  Google Scholar 

  • Wilson, M, Kannangara, K, Smith, G, Simmons, M, Raquse, “B: Nanotechnology: basic science and emerging technologies. Chapman and Hall, London”, 2002.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Rasouli Heikalabad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmani, Y., Heikalabad, S.R. & Mosleh, M. Design of a new multiplexer structure based on a new fault-tolerant majority gate in quantum-dot cellular automata. Opt Quant Electron 53, 539 (2021). https://doi.org/10.1007/s11082-021-03179-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03179-1

Keywords

Navigation