Skip to main content

Advertisement

Log in

Symmetry of surface states in graphene superlattices terminated with magnetic cap layers

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The symmetry of surface states has been investigated with numerical calculations in graphene superlattices (SLs) terminated with magnetic cap layers. It is found that the surface states in SL of pure electric basis with cap layer of magnetic potential \(A_{s} \ge 0\) are symmetric about the transverse wave vector \(k_{y} = 0\) plane to those with \(A_{s} \le 0\). While those in SL of pure magnetic basis with the same cap layer of magnetic potential \(A_{s}\) are symmetric about the energy origin \(E = 0\) plane. Additionally, the surface states in SL of general complex electric/magnetic basis show no symmetry. These interesting results will provide some important guidelines for the experimental exploration of carbon-based quantum electronic and optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akjouj, A., Djafari-Rouhani, B.: Novel surface states in lateral magnetic superlattices. Solid State Commun. 103, 161–165 (1997)

    Article  ADS  Google Scholar 

  • Arriaga, J., García-Moliner, F., Velasco, V.R.: Surface States in semiinfinite superlattices. Prog. Surf. Sci. 42, 271–279 (1993)

    Article  ADS  Google Scholar 

  • Averkov, Y.O., Yakovenko, V.M.: Effect of the δ-shaped quantum well at the one-dimensional lattice boundary on properties of Tamm type surface electronic states. Phys. Solid. States 54, 630–635 (2012)

    Article  ADS  Google Scholar 

  • Bloss, W. L: Surface states of a semi-infinite superlattice. Phys. Rev. B 44, 8035–8042 (1991)

    Article  ADS  Google Scholar 

  • Chowdhury, A.A., Maziar, C.M.: Modeling of Tamm like states in superlattices from a simple tight-binding method. J. Appl. Phys. 76, 3902–3904 (1994)

    Article  ADS  Google Scholar 

  • Geim, K.: Graphene: status and prospects. Science 324, 1530–1534 (2009)

    Article  ADS  Google Scholar 

  • Gippius, N.A., Kopelevich, G.A., Sivachenko, AYu., Tikhodeev, S.G., Yablonskii, A.L.: Interface (Tamm) minibands in superlattices. Surf. Sci. Lett. 264, L223–L226 (1992)

    Article  ADS  Google Scholar 

  • Glessner, W., Yu, R.H.: Novel surface electronic states in finite superlattices. J. Appl. Phys. 73, 4070–4071 (1993)

    Article  ADS  Google Scholar 

  • Hsueh, W.J., Chen, H.C.: Calculation of electronic surface states in superlattices via graph formulations. Phys. Rev E76, 057701–057704 (2007)

    ADS  Google Scholar 

  • Huang, F.Y., Morkoç, H.: Electronic surface state (Tamm state) under electric field in semiconductor superlattices. J. Appl. Phys. 71, 524–526 (1992)

    Article  ADS  Google Scholar 

  • Ihm, G., Noh, S.K., Falk, M.L., Lim, K.Y.: Interface localized states in coupled superlattices. J. Appl. Phys. 72, 5325–5328 (1992a)

    Article  ADS  Google Scholar 

  • Ihm, G., Falk, M.L., Noh, S.K., Lee, S.J.: Symmetry-dependent localization in a finite superlattice. Phys. Rev. B 46, 9564–9568 (1992b)

    Article  ADS  Google Scholar 

  • Jiang, H.T., Wang, Z.L., Wang, Z.G., Chen, H.: Backward electronic Tamm states in graphene-based heterostructures. Phys. Lett. A 375, 1014–1018 (2011)

    Article  ADS  Google Scholar 

  • Kłos, J., Puszkarski, H.: Conditions of coexistence of Tamm and Shockley states in a superlattice with a perturbed surface. Phys. Rev. B 68, 045316–045318 (2003)

    Article  ADS  Google Scholar 

  • Kucharczyk, R., Brzostowski, B., Djafari-Rouhani, B.: Density of states of superlattices with multiple layers per period. Phys. E. 5, 280–290 (2000a)

    Article  Google Scholar 

  • Kucharczyk, R., Steslicka, M., Djafari-Rouhani, B.: Electronic level structure and density of states of a terminated biperiodic superlattice. Phys. Rev. B 62, 4549–4556 (2000b)

    Article  ADS  Google Scholar 

  • Kucharczyk, R., Steslicka, M., Djafari-Rouhani, B.: Surface states in double-well superlattices: symmetric vs asymmetric interwell coupling. Surf. Sci. 482–485, 648–653 (2001)

    Article  ADS  Google Scholar 

  • Lin, X., Wang, H.L., Pan, H., Xu, H.Z.: Gap opening and tuning in single-layer graphene with combined electric and magnetic field modulation. Chin. Phys. B 20, 047302–047310 (2011)

    Article  ADS  Google Scholar 

  • Lin, X., Wang, H.L., Pan, H., Xu, H.Z.: Gap opening in single-layer graphene in the presence of periodic scalar and vector potentials within the continuum model. Phys. Lett. A 376, 584–589 (2012)

    Article  ADS  Google Scholar 

  • Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  ADS  Google Scholar 

  • Ohno, H., Mendez, E.E., Brum, J.A., Hong, J.M., Agullo-Rueda, F., Chang, L.L., Esaki, L.: Observation of “Tamm states” in superlattices. Phys. Rev. Lett. 64, 2555–2558 (1990)

    Article  ADS  Google Scholar 

  • Ohno, H., Mendez, E.E., Alexandrou, A., Hong, J.M.: Tamm states in superlattices. Surf. Sci. 267, 161–165 (1992)

    Article  ADS  Google Scholar 

  • Pekh, P., Silin, A.P.: Tamm minibands in graphene-based planar superlattices. Phys. Wave Phenom. 25, 249–253 (2017)

  • Pereyra, P.: Eigenvalues, eigenfunctions, and surface states in finite periodic systems. Ann. Phys. 320, 1–20 (2005). (Erratum) ibid, 321, 1276–1276 (2006).

  • Steslicka, M.: Tamm surface states in semiconductor superlattices. Prog. Surf. Sci. 50, 65–76 (1995)

    Article  ADS  Google Scholar 

  • Steslicka, M., Kucharczyk, R., Akjouj, A., Djafari-Rouhani, B., Dobrzynski, L., Davison, S.G.: Localised electronic states in semiconductor superlattices. Surf. Sci. Reports 47, 93–196 (2002)

    Article  ADS  Google Scholar 

  • Tikhodeev, S.G.: Tamm minibands in superlattices. Solid State Commun. 78, 339–342 (1991)

    Article  ADS  Google Scholar 

  • Wang, L.Y., Yan, Q.Q., Xu, H.Z., Wang, H.L., Zhang, G.L., Zhou, X.P.: Tamm states in graphene-based different combined magneto-electric superlattice heterostructures. Phys. Lett. A 380, 3297–3301 (2016)

    Article  ADS  Google Scholar 

  • Xu, H.Z., Feng, S., Zhang, Y.P., Wang, J.L., Zhang, S.C.: Resonant tunneling though an asymmetrical two magnetic-barrier structure on single layer graphene. Opt. Quant. Electron 49, 250–259 (2017)

    Article  Google Scholar 

  • Xu, H.Z., Feng, S., Zhang, Y.P.: Resonant peak splitting infinite periodic superlattices with an unit cell of two barriers and two wells on monolayer graphene. Opt. Quant. Electron 51, 158–215 (2019)

    Article  Google Scholar 

  • Yu, R.H.: Tamm states in finite semiconductor superlattices: Influence of accumulation and depletion layers. Phys. Rev. B 47, 1379–1382 (1993)

    Article  ADS  Google Scholar 

  • Yuh, P.F., Wang, K.L.: Formalism of the Kronig-Penney model for superlattices of variable basis. Phys. Rev. B 38, 13307–13315 (1988)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the State Key Laboratory of Software Development Environment (Grant No. SKLSDE-2020ZX-30).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Z. Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H.Z., Yan, Q.Q., Wang, L.Y. et al. Symmetry of surface states in graphene superlattices terminated with magnetic cap layers. Opt Quant Electron 53, 548 (2021). https://doi.org/10.1007/s11082-021-03169-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03169-3

Keywords

Navigation