Skip to main content

Advertisement

Log in

Enhance efficiency in flat and nano roughness surface perovskite solar cells with the use of index near zero materials filter

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Light confinement technologies are especially effective in improving the power conversion efficiency of thin-film perovskite solar cells. For this purpose in this paper, designing an angular filter for these photovoltaic cells using nano-rough structures and index-near-zero materials is proposed. Since perovskites’ energy bandgap can be easily tuned by their chemical composition, an optimal structure with typical compounds was proposed that produced the highest power conversion efficiency limit. Besides improving light confinement in the thin, perovskite active layer, the proposed structure improved the solar cell performance by enhancement of short-circuit current and open-circuit voltage through controlling radiative and non-radiative recombination. With these arrangements, an optimal power conversion efficiency limit of 40.01% has been calculated using the detailed-balance method, which indicates a 15.27% improvement compared to the original structure. The Finite-Difference Time-Domain (FDTD) method was used to demonstrate the expansion of the absorption spectrum and calculate the absorption efficiency for presenting an optimal structure design with nano-roughness for different perovskite compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andalibi, S., Rostami, A., Darvish, G., Farshi, M.K.M.: Band gap engineering of organo metal lead halide perovskite photovoltaic absorber. Opt. Quantum Electron. 48, 258 (2016a)

    Article  Google Scholar 

  • Andalibi, S., Rostami, A., Darvish, G., Farshi, M.K.M.: A strategy to achieve high-efficiency organolead trihalide perovskite solar cells. J. Electron. Mater. 45, 5746–5755 (2016b)

    Article  ADS  Google Scholar 

  • Araujo, G.L., Marti, A.: Absolute limiting efficiencies for photovoltaic energy conversion. Sol. Energy Mater. Sol. Cells 33(2), 213–240 (1994)

    Article  Google Scholar 

  • Basore, P.A.: Numerical modeling of textured silicon solar cells using PC-1D. IEEE Trans. Electron Devices 37(2), 337–343 (1990)

    Article  ADS  Google Scholar 

  • Bouich, A., Mari, B., Atourki, L.: Shedding light on the effect of diethyl ether antisolvent on the growth of (CH3NH3) PbI3 thin films. JOM 73, 551–557 (2021a)

    Article  ADS  Google Scholar 

  • Bouich, A., Ullah, S., Marí, B., Atourki, L., Touhami, M.E.: One-step synthesis of FA1-xGAxPbI3 perovskites thin film with enhanced stability of alpha (α) phase. Mater. Chem. Phys. 258, 123973 (2021b)

    Article  Google Scholar 

  • Campbell, P., Green, M.A.: The limiting efficiency of silicon solar cells under concentrated sunlight. IEEE Trans. Electron Devices 33(2), 234–239 (1986)

    Article  ADS  Google Scholar 

  • Castelli, I.E., Garcia-Lastra, J.M., Thygesen, K.S., Jacobsen, K.W.: Bandgap calculations and trends of organometal halide perovskites. APL Mater. 2(081514), 1–7 (2014)

    Google Scholar 

  • Edwards, B., Alu, A., Young, M.E., Silveirinha, M., Engheta, N.: Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide. Phys. Rev. Lett. 100(33903), 1–4 (2008)

    Google Scholar 

  • Eperon, G.E., Stranks, S.D., Menelaou, C., Johnston, M.B., Herz, L.M., Snaith, J.H.: Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7(3), 982–988 (2014)

    Article  Google Scholar 

  • Han, T.H., Lee, J.W., Choi, C., Tan, S., Lee, C., Zhao, Y., Dai, Z., De Marco, N., Lee, S.J., Bae, S.H.: Perovskite-polymer composite cross-linker approach for highly-stable and efficient perovskite solar cells. Nat. Commun. 10, 520 (2019)

    Article  ADS  Google Scholar 

  • Heo, J.H., Song, D.H., Im, S.H.: Planar CH3NH3PbBr 3 hybrid solar cells with 10.4% power conversion efficiency, fabricated by controlled crystallization in the spin-coating process. Adv. Mater. 26, 8179–8183 (2014)

    Article  Google Scholar 

  • Herz, L.M.: Charge-carrier dynamics in organic-inorganic metal halide perovskites. Annu. Rev. Phys. Chem. 67, 65–89 (2016)

    Article  ADS  Google Scholar 

  • Huang, X., Lai, Y., Hang, Z.H., Zheng, H., Chan, C.T.: Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials. Nat. Mater. 10(1038), 1–5 (2011)

    Google Scholar 

  • Joshi, T.K., Shukla, A., Sharma, G., Verma, A.S.: First-principles spectroscopic screening of hybrid perovskite (CH3CH2NH3PbI3) with fundamental physical properties: A potential photovoltaic absorber. Int J Energy Res 45, 908–919 (2021)

    Article  Google Scholar 

  • Jung, E.H., Jeon, N.J., Park, E.Y., Moon, C.S., Shin, T.J., Yang, T.Y., Noh, J.H., Seo, J.: Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature 567(7749), 511–515 (2019)

    Article  ADS  Google Scholar 

  • Kirchartz, T., Rau, U.: Detailed balance and reciprocity in solar cells. Phys. Status Solidi A 205(12), 2737–2751 (2008)

    Article  ADS  Google Scholar 

  • Kitazawa, N., Watanabe, Y., Nakamura, Y.: Optical properties of CH3NH3PbX3 (X = halogen) and their mixed-halide crystals. J. Mater. Sci. 37, 3585–3587 (2002)

    Article  ADS  Google Scholar 

  • Kityk, I.V., Myronchuk, G.L., Lelonek, M., Goring, P., Piskach, L., Vidrynsky, B., Ryzhuk, A., Fedorchuk, A.O., Jedryka, J.: Optoelectronic and non-linear optical properties of Lu-doped AgGaGe3Se8 crystallites. Opt. Quantum Electron. 52, 395 (2020)

    Article  Google Scholar 

  • Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009)

    Article  Google Scholar 

  • Li, D., Zhang, D., Lim, K., Hu, Y., Rong, Y., Mei, A., Park, N., Han, H.: A review on scaling up perovskite solar cells. Adv. Funct. Mater. 31, 2008621 (2020)

    Article  Google Scholar 

  • Li, G., Wu, J., Song, J., Meng, C., Song, Z., Wang, X., Liu, X., Yang, Y., Wang, D., Lan, Z.: Excellent quinoline additive in perovskite toward to efficient and stable perovskite solar cells. J. Power Sources 481, 228857 (2021)

    Article  Google Scholar 

  • Lin, Q., Sarkar, D., Lin, Y., Yeung, M., Blankemeir, L., Hazra, J., Wang, W., Niu, S., Ravichandran, J., Fan, Z., Kapadia, R.: Scalable indium phosphide thin-film nanophotonics platform for photovoltaic and photoelectrochemical devices. Adv. Energy Mater. 5(1), 1400919 (2015)

    Google Scholar 

  • Liu, D., Yang, C., Lunt, R.R.: Halide perovskites for selective ultraviolet-harvesting transparent photovoltaics. Joule 2, 1827–1837 (2018)

    Article  Google Scholar 

  • Maram, D.K., Haghighi, M., Shekoofa, O., Habibiyan, H., Ghafoorifard, H.: A modeling study on utilizing ultra-thin inorganic HTLs in inverted p–n homojunction perovskite solar cells. Sol. Energy 213, 1–12 (2020)

    Article  ADS  Google Scholar 

  • Marti, A., Balenzategui, J.L., Reyna, R.F.: Photon recycling and Shockley’s diode equation. J. Appl. Phys. 82(8), 4067–4075 (1997)

    Article  ADS  Google Scholar 

  • Mehdi, H., Mhamdi, A., Hannachi, R., Bouazizi, A.: MAPbBr 3 perovskite solar cells via a two-step deposition process. RSC Adv. 9, 12906–12912 (2019)

    Article  ADS  Google Scholar 

  • Mosconi, E., Amat, A., Nazeeruddin, M.K., Grätzel, M., Angelis, F.D.: First principles modeling of mixed halide organometal perovskites for photovoltaic applications. J. Phys. Chem. C 117(27), 1–39 (2013)

    Article  Google Scholar 

  • Parrott, J.E.: Radiative recombination and photon recycling in photovoltaic solar cells. Sol. Energy Mater. Sol. Cells 30(3), 221–231 (1993)

    Article  Google Scholar 

  • Rana, M., Tariquzzaman, M., Mandal, S.K.: Detailed balance efficiency of single junction perovskite solar cell. ICAEEE 18471904, 1–4 (2018)

    Google Scholar 

  • Sha, W.E.I., Ren, X., Chen, L., Choy, W.C.H.: The efficiency limit of CH3NH3PbI3 perovskite solar cells. Appl. Phys. Lett. 106(221104), 1–5 (2015)

    Google Scholar 

  • Shi, D., Adinolfi, V., Comin, R., Yuan, M.J., Alarousu, E., Buin, A., Chen, Y., Hoogland, S., Rothenberger, A., Katsiev, K., Losovyj, Y., Zhang, X., Dowben, P.A., Mohammed, O.F., Sargent, E.H., Bakr, O.M.: Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347(6221), 519–522 (2015)

    Article  ADS  Google Scholar 

  • Shi, B., Liu, B., Luo, J., Li, Y., Zheng, C.Z., Ya, X., Fan, L., Liang, J., Ding, Y., Wei, C., Zhang, D., Zhao, Y., Zhang, X.: Enhanced light absorption of thin perovskite solar cells using textured substrates. Sol. Energy Mater. Sol. Cells 168, 214–220 (2017)

    Article  Google Scholar 

  • Shockley, W., Queisser, H.J.: Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32(3), 510–519 (1961)

    Article  ADS  Google Scholar 

  • Silveirinha, M., Engheta, N.: Tunneling of electromagnetic energy through subwavelength channels and bends using ε-nearzero materials. Phys. Rev. Lett. 97(157403), 1–4 (2006)

    Google Scholar 

  • Wang, Z., Wang, Z., Yu, Z.: Photon management with index-near-zero materials. Appl. Phys. Lett. 109, 051101 (2016)

    Article  ADS  Google Scholar 

  • Wehrenfennig, C., Eperon, G.E., Johnston, M.B., Snaith, H.J., Herz, L.M.: High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26, 1584–1589 (2014)

    Article  Google Scholar 

  • Xing, G.C., Mathews, N., Sun, S.Y., Lim, S.S., Lam, Y.M., Gratzel, M., Mhaisalkar, S., Sum, T.C.: Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342, 344–347 (2013)

    Article  ADS  Google Scholar 

  • Xing, G.C., Mathews, N., Lim, S.S., Yantara, N., Liu, X.F., Sabba, D., Gratzel, M., Mhaisalkar, S., Sum, T.C.: Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat. Mater. 13(5), 476–480 (2014)

    Article  ADS  Google Scholar 

  • Xu, K.: Development of tin-based perovskite materials for solar cell applications: A minireview. Instrum Sci. Technol. 49, 91–105 (2020)

    Article  Google Scholar 

  • Xu, Y., Chen, H.: Total reflection and transmission by epsilon-near-zero metamaterials with defects. Appl. Phys. Lett. 98(113501), 1–3 (2011)

    Google Scholar 

  • Zheng, L.Y., Wu, Y., Ni, X., Chen, Z.G., Lu, M.H., Chen, Y.F.: Acoustic cloaking by a near-zero-index phononic crystal. Appl. Phys. Lett. 104(161904), 1–5 (2014)

    Google Scholar 

  • Zhou, M., Shi, L., Zi, J., Yu, Z.: Extraordinarily large optical cross section for localized single nanoresonator. Phys. Rev. Lett. 115(23903), 1–5 (2015)

    Google Scholar 

  • Zhu, X., Su, H., Marcus, R.A., Michel-Beyerle, M.E.: Computed and experimental absorption spectra of the perovskite CH3NH3PbI3. J. Phys. Chem. Lett. 5(17), 3061–3065 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shabnam Andalibi Miandoab.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katyani, R., Andalibi Miandoab, S. Enhance efficiency in flat and nano roughness surface perovskite solar cells with the use of index near zero materials filter. Opt Quant Electron 53, 520 (2021). https://doi.org/10.1007/s11082-021-03161-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03161-x

Keywords

Navigation