Skip to main content
Log in

Novel optical solitons to the perturbed Gerdjikov–Ivanov equation via collective variables

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The objective of this manuscript is to study the collective variable (CV) technique to explore an important form of Schrödinger equation known as the Gerdjikov–Ivanov (GI) equation which expresses the dynamics of solitons for optical fibers in terms of pulse parameters. These parameters are temporal position, amplitude, width, chirp, phase, and frequency known as CVs. This is an effective and dynamic mathematical gadget to obtain soliton solutions of non-dimensional as well as perturbed GI equations. Moreover, an established numerical scheme that is the fourth-order Runge–Kutta method is exerted for the numerical simulation of the revealing coupled system of six ordinary differential equations which represent all the CVs included in the pulse ansatz. The CV approach is used to determine the evolution of pulse parameters with the propagation distance and illustrated them graphically. Furthermore, figures show the compelling periodic oscillations of pulse chirp, width, frequency and amplitude of soliton. For various values of super-Gaussian pulse parameters, the numerical behavior of solitons to illustrate variations in CVs is provided. Other significant aspects with regards to the current investigation are also inferred.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdou, M.A.: Generalized solitonary and periodic solution for nonlinear partial differential equations by the exp-fuction method. Nonlinear Dyn. 52, 1–9 (2008)

    Article  MATH  Google Scholar 

  • Ali, K.K., Osman, M.S., Abdel-Aty, M.: New optical solitary wave solutions of Fokas-Lenells equation in optical fiber via Sine-Gordon expansion method. Alex. Eng. J. 59, 1191–1196 (2020)

    Article  Google Scholar 

  • Ali, K.K., Cattani, C., Gómez-Aguilar, J.F., Baleanu, D., Osman, M.S.: Analytical and numerical study of the DNA dynamics arising in oscillator-chain of Peyrard-Bishop model. Chaos Solitons Fract. 139, 1–11, (2020)

    Article  MathSciNet  Google Scholar 

  • Almusawa, H., Alam, M.N., Asad, M.F.A., Osman, M.S.: New soliton configurations for two different models related to the nonlinear Schrödinger equation through a graded-index waveguide. AIP Adv. 11, 1-14 (2021)

    Article  Google Scholar 

  • Al-Qarni, A.A., Alshaery, A.A., Bakodah, H.O.: Optical solitons for the Lakshmanan-Porsezian-Daniel model by collective variable method. Results Opt. 1, 1–10 (2020)

    Google Scholar 

  • Arshed, S.: Two reliable techniques for the soliton solutions of perturbed Gerdjikov-Ivanov equation. Optik 164, 93–99 (2018)

    Article  ADS  Google Scholar 

  • Arshed, S., Biswas, A., Abdelaty, M., Zhou, Q., Moshokoa, S.P., Belic, M.: Optical soliton perturbation for Gerdjikov-Ivanov equation via two analytical techniques. Chin. J. Phys. 56, 2879–2886 (2018)

    Article  Google Scholar 

  • Aslan, E.C., Inc, M.: Soliton solutions of NLSE with quadratic-cubic nonlinearity and stability analysis. Waves Random Complex Media 27, 594–601 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  • Ding, Y., Osman, M.S., Wazwaz, A.M.: Abundant complex wave solutions for the nonautonomous Fokas-Lenells equation in presence of perturbation terms. Optik 181, 503–513 (2019)

    Article  ADS  Google Scholar 

  • Doran, N.J., Smith, N.J., Forysiak, W., Knox, F.M.: Dispersion as control parameter in soliton transmission systems. Phys. Appl. Opt. Solitons Fibres 95, 1–14 (1955)

    Google Scholar 

  • Drazin, P.G.: Nonlinear System. Cambridge University Press, Cambridge (1992)

    Book  MATH  Google Scholar 

  • Goufoa, E.F.D., Kumar, S., Mugishaa, S.B.: Similarities in a fifth-order evolution equation with and with no singular kernel. Chaos Solitons Fract. 130, 1–10 (2020)

    MathSciNet  Google Scholar 

  • Hasegawa, A., Frederick, T.: Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers: I-anomalous dispersion. Appl. Phys. Lett. 10(1063/1), 1654836 (1973)

    Google Scholar 

  • Hosseini, K., Osman, M.S., Mirzazadeh, M., Rabiei, F.: Investigation of different wave structures to the generalized third-order nonlinear Schrödinger equation. Optik 206, 1-8 (2020)

    Google Scholar 

  • Hosseini, K., Mirzazadeh, M., Ilie, M., Radmehr, S.: Dynamics of optical solitons in the perturbed Gerdjikov-Ivanov equation. Optik 206, 1–11 (2020)

    Google Scholar 

  • Inc, M.: New type soliton solutions for the Zhiber-Shabat and related equations. Optik 138, 1–7 (2017)

    Article  ADS  Google Scholar 

  • Inc, M., Ates, E., Tchier, F.: Optical solitons of the coupled nonlinear Schrödinger’s equation with spatio-temporal dispersion. Nonlinear Dyn. 85, 1319–1329 (2016)

    Article  MATH  Google Scholar 

  • Inc, M., Aliyu, A.I., Yusuf, A.: Dark optical, singular solitons and conservation laws to the nonlinear Schrödinger’s equation with spatio-temporal dispersion. Mod. Phys. Lett. B 31, 1–7 (2017)

    Article  ADS  Google Scholar 

  • Kadkhoda, N., Jafari, H.: Analytical solutions of the Gerdjikov-Ivanov equation by using \(exp(-\phi (\xi ))\) expansion method. Optik 139, 72–76 (2017)

    Article  ADS  Google Scholar 

  • Khater, M.M.A., Alzaidi, J.F., Attia, R.A.M., Inc, M., Lu, D.: Analytical and numerical solutions for the current and voltage model on an electrical transmission line with time and distance. Phys. Scr. 95, 1–11 (2020)

    Google Scholar 

  • Kudryashov, N.A.: Exact soliton solution of the generalized evolution equation of wave dynamics. J. Appl. Math. Mech. 52, 360–365 (1988)

    Article  MathSciNet  Google Scholar 

  • Kudryashov, N.A.: Analytical Theory of Nonlinear Differential Equation. Institute of Computer Investigations, Moscow (2004)

    Google Scholar 

  • Kumar, S.: A new analytical modelling for fractional telegraph equation via Laplace transform. Appl. Math. Model. 38, 3154–3163 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Kumar, S., Kumar, R., Agarwal, R.P., Samet, B.: A study of fractional Lotka-Volterra population model using Haar wavelet and Adams-Bashforth-Moulton methods. Math. Methods Appl. Sci. 43, 5564–5578 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Liu, J.G., Osman, M.S., Wazwaz, A.M.: A variety of nonautonomous complex wave solutions for the (2+1)-dimensional nonlinear Schrödinger equation with variable coefficients in nonlinear optical fibers. Optik 180, 917–923 (2019)

    Article  ADS  Google Scholar 

  • Osman, M.S.: Multi-soliton rational solutions for some nonlinear evolution equations. Open Phys. 14, 26–36 (2016)

    Article  ADS  Google Scholar 

  • Qurashi, M.M.A., Yusuf, A., Aliyu, A.I., Inc, M.: Optical and other solitons for the forth-order dispersive nonlinear Schrödinger equation with dual-power law nonlinearity. Superlattices Microstruct. 105, 183–197 (2017)

    Article  ADS  Google Scholar 

  • Raza, N., Arshed, S.: Chiral bright and dark soliton solutions of Schrödinger equation in (1 + 2)-dimensions. Ain Shams Eng. J. 11, 1237–1241 (2020)

    Article  Google Scholar 

  • Raza, N., Javid, A.: Optical dark and dark-singular soliton solutions of (1+2)-dimensional chiral nonlinear Schrödinger’s equation. Waves Random Complex Media 29, 1–16 (2019)

    Article  Google Scholar 

  • Raza, N., Zubair, A.: Optical dark and singular solitons of generalized nonlinear Schrödinger’s equation with anti-cubic law of nonlinearity. Mod. Phys. Lett. B 33, 1–9 (2019)

    Google Scholar 

  • Raza, N., Arshed, S., Sial, S.: Optical solitons for coupled Fokas-Lenells equation in birefringence fibers. Mod. Phys. Lett. B 33(26), 1–9 (2019). 

    Article  MathSciNet  Google Scholar 

  • Raza, N., Afzal, U., Butt, A.R., Rezazadeh, H.: Optical solitons in nematic liquid crystals with Kerr and parabolic law nonlinearities. Opt. Quant. Electron. 51(4), 1–16 (2019). 

    Article  Google Scholar 

  • Rezazadeh, H., Ullah, N., Akinyemi, L., Shah, A., Alizamin, S.M., Chu, Y.M., Ahmad, H.: Optical soliton solutions of the generalized non-autonomous nonlinear Schrödinger equations by the new Kudryashov’s method. Results Phys. 24, 1–10 (2021)

    Google Scholar 

  • Shehata, M.S.M., Rezazadeh, H., Zahran, E.H.M., Tala-Tebue, E., Bekir, A.: New optical soliton solutions of the perturbed Fokas-Lenells equation. Commun. Theor. Phys. 71, 1–12 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Tchier, F., Yusuf, A., Aliyu, A.I., Inc, M.: Soliton solutions and conservation laws for lossy nonlinear transmission line equation. Superlattices Microstuct. 107, 320–336 (2017)

    Article  ADS  Google Scholar 

  • Veljkovic, M., Xu, Y., Milovic, D., Mahmood, M.F., Biswas, A., Belic, M.R.: Super-Gaussian in optical metamaterials using collective variables. J. Comput. Theor. Nanosci. 12, 5119–5124 (2015)

    Article  Google Scholar 

  • Yépez-Martínez, H., Rezazadeh, H., Inc, M., Ali Akinlar, M.: New solutions to the fractional perturbed Chen-Lee-Liu equation with a new local fractional derivative. Waves Random Complex Media 1, 1–36 (2021)

  • Zakharov, V.E., Stefan, W.: Optical solitons: theoretical challenges and industrial perspectives (1998), Springer Science & Business Media, 379 pages

  • Zulfiqar, A., Ahmad, J.: New optical solutions of conformable fractional perturbed Gerdjikov-Ivanov equation in mathematical nonlinear optics. Results Phys. 21, 1–10 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

José Francisco Gómez Aguilar acknowledges the support provided by CONACyT: cátedras CONACyT para jóvenes investigadores 2014 and SNI-CONACyT.

Author information

Authors and Affiliations

Authors

Contributions

ZH: Conceptualization, methodology, writing original draft preparation; NR: methodology, data curation, writing-original draft preparation; JFG: conceptualization, methodology, writing—original draft preparation, software, supervision.

Corresponding author

Correspondence to J. F. Gómez-Aguilar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, Z., Raza, N. & Gómez-Aguilar, J.F. Novel optical solitons to the perturbed Gerdjikov–Ivanov equation via collective variables. Opt Quant Electron 53, 474 (2021). https://doi.org/10.1007/s11082-021-03123-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03123-3

Keywords

Navigation