Skip to main content
Log in

Highly sensitive plasmonic temperature sensor based on Fano resonances in MIM waveguide coupled with defective oval resonator

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

High sensitivity and a large detection range with simple design are highly desirable to realize temperature sensor. A highly sensitive temperature sensor based on Fano resonances in metal-insulator-metal (MIM) waveguide with Nano-wall side-coupled to oval resonator is proposed in this work. The Fano resonance is originated from the coherent coupling and interference between the discrete and the continua state. It shows a different profile, which is typically asymmetric and sharp line, in comparison with the Lorentzian resonance profile. The transmission properties are numerically simulated by finite-difference time-domain method. Structural parameters have a key role in the sensor’s sensitivity and transmission spectrum that are studied to systematically analyze the sensing characteristics of such structure. The results of our study indicate that there exist Four-fano resonance peaks in the transmission spectrum. All of which has a linear relationship with the refractive index of the analyte under sensing. Through the optimization of structural parameters, sensitivity of 2.463 \(\hbox {nm}/^{\circ } \hbox {C}\) is achieved, indicating the designed sensor can pave the way in the nano-integrated plasmonic devices for high-accurate temperature detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Achi, S.E., Hocini, A., Salah, H.B., Harhouz, A.: Refractive index sensor MIM based waveguide coupled with a slotted side resonator. Progress Electromagn. Res. 96, 147–156 (2020)

    Article  Google Scholar 

  • Barnes, W.L., Dereux, A., Ebbesen, T.W.: Surface plasmon subwavelength optics. Nature 424(6950), 824–830 (2003)

    Article  ADS  Google Scholar 

  • Bashiri, J., Rezaei, B., Barvestani, J., Zapata-Rodríguez, C.: Bloch surface waves engineering in one-dimensional photonic crystals with a chiral cap layer. JOSA B 36(8), 2106–2113 (2019)

    Article  ADS  Google Scholar 

  • Bensalah, H., Hocini, A., Temmar, M., Khedrouche, D., et al.: Design of mid infrared high sensitive metal-insulator-metal plasmonic sensor. Chin. J. Phys. 61, 86–97 (2019)

    Article  Google Scholar 

  • Binfeng, Y., Hu, G., Zhang, R., Yiping, C.: Fano resonances in a plasmonic waveguide system composed of stub coupled with a square cavity resonator. J. Opt. 18(5), 055002 (2016)

    Article  ADS  Google Scholar 

  • Chatterjee, S., Palermo, G., Letsou, T., Lio, G., De Luca, A., Strangi, G.: Temperature and refractive index sensing based on plasmonic fano resonance, Proceedings of the 3 rd International Conference of Theoretical and Applied Nanoscience and Nanotechnology (TANN'19) Ottawa, Canada – June (2019)

  • Chen, F., Zhang, H., Sun, L., Li, J., Yu, C.: Temperature tunable fano resonance based on ring resonator side coupled with a mim waveguide. Opt. Laser Technol. 116, 293–299 (2019)

    Article  ADS  Google Scholar 

  • Chen, Z., Yu, L., Wang, L., Duan, G., Zhao, Y., Xiao, J.: Sharp asymmetric line shapes in a plasmonic waveguide system and its application in nanosensor. J. Lightwave Technol. 33(15), 3250–3253 (2015)

    Article  ADS  Google Scholar 

  • Danaie, M., Shahzadi, A.: Design of a high-resolution metal-insulator-metal plasmonic refractive index sensor based on a ring-shaped si resonator. Plasmonics 14(6), 1453–1465 (2019)

    Article  Google Scholar 

  • Dong, L., Xu, X., Li, C., Guo, Y., Sun, K., Ding, Y.: Plasmon-induced transparency in sensing application with semicircle cavity waveguide. Opt. Commun. 410, 751–755 (2018)

    Article  ADS  Google Scholar 

  • Gai, H., Wang, J., Tian, Q.: Modified debye model parameters of metals applicable for broadband calculations. Appl. Opt. 46(12), 2229–2233 (2007)

    Article  ADS  Google Scholar 

  • Ghorbani, S., Dashti, M.A., Jabbari, M.: Plasmonic nano-sensor based on metal-dielectric-metal waveguide with the octagonal cavity ring. Laser Phys. 28(6), 066208 (2018)

    Article  ADS  Google Scholar 

  • Goyal, A.K., Pal, S.: Design analysis of bloch surface wave based sensor for haemoglobin concentration measurement. Appl. Nanosci. 10, 3639–3647 (2020)

    Article  ADS  Google Scholar 

  • Goyal, A.K., Saini, J.: Performance analysis of bloch surface wave-based sensor using transition metal dichalcogenides. Appl. Nanosci. 10(11), 4307–4313 (2020)

    Article  ADS  Google Scholar 

  • Hocini, A., Khedrouche, D., Melouki, N., et al.: A high-sensitive sensor and band-stop filter based on intersected double ring resonators in metal-insulator-metal structure. Opt. Quant. Electron. 52(7), 1–10 (2020)

    Article  Google Scholar 

  • Hocini, A., Ben Salah, H. & Temmar, M.N.: Ultra-high-sensitive sensor based on a metal–insulator–metal waveguide coupled with cross cavity. J. Comput. Electron. 20, 1354–1362 (2021)

    Article  Google Scholar 

  • Kong, Y., Qiu, P., Wei, Q., Quan, W., Wang, S., Qian, W.: Refractive index and temperature nanosensor with plasmonic waveguide system. Opt. Commun. 371, 132–137 (2016)

    Article  ADS  Google Scholar 

  • Kong, Y., Wei, Q., Liu, C., Wang, S.: Nanoscale temperature sensor based on fano resonance in metal-insulator-metal waveguide. Opt. Commun. 384, 85–88 (2017)

    Article  ADS  Google Scholar 

  • Li, Q., Wang, T., Su, Y., Yan, M., Qiu, M.: Coupled mode theory analysis of mode-splitting in coupled cavity system. Opt. Express 18(8), 8367–8382 (2010)

    Article  ADS  Google Scholar 

  • Lin, G., Yang, H., Deng, Y., Wu, D., Zhou, X., Wu, Y., Cao, G., Chen, J., Sun, W., Zhou, R.: Ultra-compact high-sensitivity plasmonic sensor based on fano resonance with symmetry breaking ring cavity. Opt. Express 27(23), 33359–33368 (2019)

    Article  ADS  Google Scholar 

  • Liu, N., Weiss, T., Mesch, M., Langguth, L., Eigenthaler, U., Hirscher, M., Sonnichsen, C., Giessen, H.: Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. Nano Lett. 10(4), 1103–1107 (2010)

    Article  ADS  Google Scholar 

  • Lu, H., Liu, X., Mao, D., Gong, Y., Wang, G.: Induced transparency in nanoscale plasmonic resonator systems. Opt. Lett. 36(16), 3233–3235 (2011)

    Article  ADS  Google Scholar 

  • MacDonald, K.F., Sámson, Z.L., Stockman, M.I., Zheludev, N.I.: Ultrafast active plasmonics. Nat. Photonics 3(1), 55–58 (2009)

    Article  ADS  Google Scholar 

  • Ozbay, E.: Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311(5758),189–193 (2006)

  • Piao, X., Yu, S., Koo, S., Lee, K., Park, N.: Fano-type spectral asymmetry and its control for plasmonic metal-insulator-metal stub structures. Opt. Express 19(11), 10907–10912 (2011)

    Article  ADS  Google Scholar 

  • Piao, X., Yu, S., Park, N.: Control of fano asymmetry in plasmon induced transparency and its application to plasmonic waveguide modulator. Opt. Express 20(17), 18994–18999 (2012)

    Article  ADS  Google Scholar 

  • Tang, Y., Zhang, Z., Wang, R., Hai, Z., Xue, C., Zhang, W., Yan, S.: Refractive index sensor based on fano resonances in metal-insulator-metal waveguides coupled with resonators. Sensors 17(4), 784 (2017)

    Article  ADS  Google Scholar 

  • Tian, J., Wei, G., Yang, R., Pei, W.: Fano resonance and its application using a defective disk resonator coupled to an mdm plasmon waveguide with a nano-wall. Optik 208, 164136 (2020)

    Article  ADS  Google Scholar 

  • Tong, L., Wei, H., Zhang, S., Xu, H.: Recent advances in plasmonic sensors. Sensors 14(5), 7959–7973 (2014)

    Google Scholar 

  • Wang, M., Zhang, M., Wang, Y., Zhao, R., Yan, S.: Fano resonance in an asymmetric mim waveguide structure and its application in a refractive index nanosensor. Sensors 19(4), 791 (2019)

    Article  ADS  Google Scholar 

  • Wang, R., Xia, H., Zhang, D., Chen, J., Zhu, L., Wang, Y., Yang, E., Zang, T., Wen, X., Zou, G., et al.: Bloch surface waves confined in one dimension with a single polymeric nanofibre. Nat. Commun. 8(1), 1–10 (2017)

    Google Scholar 

  • Wang, Y., Li, S., Zhang, Y., Yu, L.: Ultrasharp fano resonances based on the circular cavity optimized by a metallic nanodisk. IEEE Photonics J. 8(6), 1–8 (2016)

    Article  Google Scholar 

  • Wen, K., Hu, Y., Chen, L., Zhou, J., Lei, L., Guo, Z.: Fano resonance with ultra-high figure of merits based on plasmonic metal-insulator-metal waveguide. Plasmonics 10(1), 27–32 (2015)

    Article  Google Scholar 

  • Wen, K., Yan, L., Pan, W., Luo, B., Guo, Z., Guo, Y., Luo, X.: Electromagnetically induced transparency-like transmission in a compact side-coupled t-shaped resonator. J. Lightwave Technol. 32(9), 1701–1707 (2014)

    Article  ADS  Google Scholar 

  • Wu, T., Liu, Y., Yu, Z., Ye, H., Peng, Y., Shu, C., Yang, C., Zhang, W., He, H.: A nanometeric temperature sensor based on plasmonic waveguide with an ethanol-sealed rectangular cavity. Optics Communications 339, 1–6 (2015)

    Article  ADS  Google Scholar 

  • Yan, S.-B., Luo, L., Xue, C.-Y., Zhang, Z.-D.: A refractive index sensor based on a metal-insulator-metal waveguide-coupled ring resonator. Sensors 15(11), 29183–29191 (2015)

    Article  ADS  Google Scholar 

  • Yin, Y., Qiu, T., Li, J., Chu, P.K.: Plasmonic nano-lasers. Nano Energy 1(1), 25–41 (2012)

    Article  Google Scholar 

  • Yu, S., Piao, X., Hong, J., Park, N.: Progress toward high-q perfect absorption: a fano antilaser. Phys. Rev. A 92(1), 011802 (2015)

    Article  ADS  Google Scholar 

  • Yu, S., Wang, S., Zhao, T., Yu, J.: Tunable plasmonic system based on a slotted side-coupled disk resonator and its multiple applications on chip-scale devices. Optik, pp. 164748 (2020)

  • Yu, S., Zhao, T., Yu, J., Pan, D.: Tuning multiple fano resonances for on-chip sensors in a plasmonic system. Sensors 19(7), 1559 (2019)

    Article  ADS  Google Scholar 

  • Zayats, A.V., Smolyaninov, I.I., Maradudin, A.A.: Nano-optics of surface plasmon polaritons. Phys. Rep. 408(3–4), 131–314 (2005)

    Article  ADS  Google Scholar 

  • Zhang, X., Qi, Y., Zhou, P., Gong, H., Hu, B., Yan, C.: Refractive index sensor based on fano resonances in plasmonic waveguide with dual side-coupled ring resonators. Photonic Sensors 8(4), 367–374 (2018)

    Article  ADS  Google Scholar 

  • Zhang, X., Shao, M., Zeng, X.: High quality plasmonic sensors based on fano resonances created through cascading double asymmetric cavities. Sensors 16(10), 1730 (2016a)

    Article  ADS  Google Scholar 

  • Zhang, Y., Li, S., Chen, Z., Jiang, P., Jiao, R., Zhang, Y., Wang, L., Yu, L.: Ultra-high sensitivity plasmonic nanosensor based on multiple fano resonance in the mdm side-coupled cavities. Plasmonics 12(4), 1099–1105 (2017)

    Article  Google Scholar 

  • Zhang, Y., Li, S., Zhang, X., Chen, Y., Wang, L., Zhang, Y., Yu, L.: Evolution of fano resonance based on symmetric/asymmetric plasmonic waveguide system and its application in nanosensor. Opt. Commun. 370, 203–208 (2016b)

    Article  ADS  Google Scholar 

  • Zhao, T., Yu, S.: Ultra-high sensitivity nanosensor based on multiple fano resonance in the mim coupled plasmonic resonator. Plasmonics 13(4), 1115–1120 (2018)

    Article  Google Scholar 

  • Zhou, N., Ye, C., Polavarapu, L., Xu, Q.-H.: Controlled preparation of au/ag/sno 2 core-shell nanoparticles using a photochemical method and applications in lspr based sensing. Nanoscale 7(19), 9025–9032 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Algerian Ministry of Higher Education and Scientific Research and La Direction Générale de la Recherche Scientifique et du Développement Technologique (DGRSDT) via funding through the PRFU Project No. A25N01UN28012 0180001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahlam Harhouz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harhouz, A., Hocini, A. Highly sensitive plasmonic temperature sensor based on Fano resonances in MIM waveguide coupled with defective oval resonator. Opt Quant Electron 53, 439 (2021). https://doi.org/10.1007/s11082-021-03088-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03088-3

Keywords

Navigation