Skip to main content

Efficient tunable plasmonic mode converters infiltrated with nematic liquid crystal layers

A Correction to this article was published on 06 August 2021

This article has been updated

Abstract

This paper presents two efficient tunable plasmonic mode converters in the infrared regime. The proposed configurations consist of silver layer with etched rectangular holes as metal insulator metal waveguides with central cavities. The holes are infiltrated by nematic liquid crystal (NLC) material to increase the transmission through the suggested designs. Additionally, the NLC is used to have tunable operation where the modes at the output port can be controlled. The simulations are carried out using full vectorial finite element method. The first design has a single output port which converts the TM mode into the TEM mode with high transmission conversion efficiency of 70%. Further, the second structure allows the generation of the two plasmonic modes simultaneously in two output waveguides. During the biased state, the s- mode transmission conversion efficiency reaches 50% while the transmission of a- mode at the unbiased state is equal to 49%. It is expected that the proposed tunable mode converters will play an important role in the development of the plasmonic-photonic circuits.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Change history

References

  1. Areed, N.F., Hussien, M., Obayya, S.S.: Reconfigurable coupler-based metallic photonic crystal lens and nematic liquid crystal. JOSA B 35(10), 2459–2466 (2018)

    ADS  Article  Google Scholar 

  2. Borshch, V., Shiyanovskii, S.V., Lavrentovich, O.D.: Nanosecond electro-optic switching of a liquid crystal. Phys. Rev. Lett. 111(10), 107802 (2013)

    ADS  Article  Google Scholar 

  3. COMSOL Multiphysics Software; https://www.comsol.com

  4. Chen, Q., Wang, Y., Wu, Y.: Integer-programming model for plasmonic waveguide demultiplexers. Plasmonics 10(2), 329–334 (2015)

    Article  Google Scholar 

  5. Cheng, Z., Wang, J., Yang, Z., Yin, H., Wang, W., Huang, Y., Ren, X.: Broadband and high extinction ratio mode converter using the tapered hybrid plasmonic waveguide. IEEE Photon. J. 11(3), 1–8 (2019)

    Article  Google Scholar 

  6. Dagens, B., Février, M., Gogol, P., Blaize, S., Apuzzo, A., Magno, G., Lérondel, G.: Direct observation of optical field phase carving in the vicinity of plasmonic metasurfaces. Nano Lett. 16(7), 4014–4018 (2016)

    ADS  Article  Google Scholar 

  7. Desmet, H., Neyts, K., Baets, R.: Liquid crystal orientation on patterns etched in Silicon on Insulator. In: Integrated Optics, Silicon Photonics, and Photonic Integrated Circuits (Vol. 6183, p. 61831Z). International Society for Optics and Photonics. (2006)

  8. Dionne, J.A., Sweatlock, L.A., Atwater, H.A., Polman, A.: Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization. Phys. Rev. B 73(3), 035407 (2006)

    ADS  Article  Google Scholar 

  9. El-Rabiaey, M.A., Areed, N.F., Obayya, S.S.: Novel plasmonic data storage based on nematic liquid crystal layers. J. Lightw. Technol. 34(16), 3726–3732 (2016)

    ADS  Article  Google Scholar 

  10. Eskalen, H., Özğan, Ş., Alver, Ü., & Kerli, S.: Electro-optical properties of liquid crystals composite with zinc oxide nanoparticles. Acta Phys. Polon. A., 127(3) (2015)

  11. Fernández-Domínguez, A.I., Moreno, E., Martín-Moreno, L., García-Vidal, F.J.: Terahertz wedge plasmon polaritons. Opt. Lett. 34(13), 2063–2065 (2009)

    ADS  Article  Google Scholar 

  12. Gramotnev, D.K., Bozhevolnyi, S.I.: Plasmonics beyond the diffraction limit. Nat. Photon. 4(2), 83 (2010)

    ADS  Article  Google Scholar 

  13. Haakestad, M.W., Alkeskjold, T.T., Nielsen, M.D., Scolari, L., Riishede, J., Engan, H.E., Bjarklev, A.: Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber. IEEE Photon. Technol. Lett. 17(4), 819–821 (2005)

    ADS  Article  Google Scholar 

  14. Hameed, M.F.O., Obayya, S.S.A.: Polarization rotator based on soft glass photonic crystal fiber with liquid crystal core. J. Lightw. Technol. 29(18), 2725–2731 (2011a )

    ADS  Article  Google Scholar 

  15. Hameed, M.F.O., Obayya, S.S.: Modal analysis of a novel soft glass photonic crystal fiber with liquid crystal core. J. Lightw. Technol. 30(1), 96–102 (2011b)

    ADS  Article  Google Scholar 

  16. Hameed, M.F.O., Obayya, S.S.A., Wiltshire, R.J.: Beam propagation analysis of polarization rotation in soft glass nematic liquid crystal photonic crystal fibers. IEEE Photon. Technol. Lett 22 (3), 188–190 (2010)

  17. Hameed, M.F.O., Alrayk, Y.K.A., Shaalan, A.A., Deeb, E., Obayya, W.S.: Design of highly sensitive multichannel bimetallic photonic crystal fiber biosensor. J .Nanophoton. 10(4), 046016 (2016)

    Article  Google Scholar 

  18. Hameed, M.F.O., Saadeldin, A.S., Elkaramany, E.M.A., Obayya, S.S.A.: Label-free highly sensitive hybrid plasmonic biosensor for the detection of DNA hybridization. J. Lightwave Technol. 35(22), 4851–4858 (2017)

    ADS  Article  Google Scholar 

  19. Heikal, A.M., Hameed, M.F.O., Obayya, S.S.: A.: Improved trenched channel plasmonic waveguide. J. Lighw. Technol. 31(13), 2184-2191 (2013)

  20. Hung, Y.T., Huang, C.B., Huang, J.S.: Plasmonic mode converter for controlling optical impedance and nanoscale light-matter interaction. Opt. Exp. 20(18), 20342–20355 (2012)

    ADS  Article  Google Scholar 

  21. Johnson, P.B., Christy, R.W.: Optical constants of the noble metals. Phys. Rev. B 6(12), 4370 (1972)

    ADS  Article  Google Scholar 

  22. Kim, J., Lee, S.Y., Park, H., Lee, K., Lee, B.: Reflectionless compact plasmonic waveguide mode converter by using a mode-selective cavity. Opt. Exp. 23(7), 9004–9013 (2015)

    ADS  Article  Google Scholar 

  23. Kong, X.T., Li, Z.B., Tian, J.G.: Mode converter in metal-insulator-metal plasmonic waveguide designed by transformation optics. Opt. Exp. 21(8), 9437–9446 (2013)

    ADS  Article  Google Scholar 

  24. Krasavin, A.V., Zayats, A.V.: Guiding light at the nanoscale numerical optimization of ultrasubwavelength metallic wire plasmonic waveguides. Opt. Lett. 36(16), 3127–3129 (2011)

    ADS  Article  Google Scholar 

  25. Lee, D.J., Yim, H.D., Lee, S.G., Beom- Hoan, O.: Tiny surface plasmon resonance sensor integrated on silicon waveguide based on vertical coupling into finite metal-insulator-metal plasmonic waveguide. Opt. Exp. 19(21), 19895–19900 (2011)

    ADS  Article  Google Scholar 

  26. Lee, J., Song, J., Sung, G.Y., Shin, J.H.: Plasmonic waveguide ring resonators with 4 nm air gap and λ02/15 000 mode-area fabricated using photolithography. Nano Lett. 14(10), 5533–5538 (2014)

    ADS  Article  Google Scholar 

  27. Li, J., Wu, S.T., Brugioni, S., Meucci, R., Faetti, S.: Infrared refractive indices of liquid crystals. J. Appl. Phys. 97(7), 073501 (2005)

    ADS  Article  Google Scholar 

  28. Maier, S.A., Kik, P.G., Atwater, H.A.: Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: estimation of waveguide loss. Appl. Phys. Lett. 81(9), 1714–1716 (2002)

    ADS  Article  Google Scholar 

  29. Moreno, E., Garcia-Vidal, F.J., Rodrigo, S.G., Martin-Moreno, L., Bozhevolnyi, S.I.: Channel plasmon-polaritons modal shape, dispersion, and losses. Opt. Lett. 31(23), 3447–3449 (2006)

    ADS  Article  Google Scholar 

  30. Obayya, S., Areed, N.F.F., Hameed, M.F.O., Abdelrazik, M.H.: Optical nano-antennas for energy harvesting, Innovative Materials and Systems for Energy Harvesting Applications, 26–62 (2015)

  31. Ohana, D., Levy, U.: Mode conversion based on dielectric metamaterial in silicon. Opt. Exp. 22(22), 27617–27631 (2014)

    ADS  Article  Google Scholar 

  32. Pan, D., Wei, H., Jia, Z., Xu, H.: Mode conversion of propagating surface plasmons in nanophotonic networks induced by structural symmetry breaking. Sci. Rep. 4, 4993 (2014)

    ADS  Article  Google Scholar 

  33. Ren, G., Shum, P., Yu, X., Hu, J., Wang, G., Gong, Y.: Polarization dependent guiding in liquid crystal filled photonic crystal fibers. Opt. Commun. 281(6), 1598–1606 (2008)

    ADS  Article  Google Scholar 

  34. Siegfried, T., Ekinci, Y., Solak, H.H., Martin, O.J., Sigg, H.: Fabrication of sub-10 nm gap arrays over large areas for plasmonic sensors. Appl. Phys. Lett. 99(26), 280 (2011)

    Article  Google Scholar 

  35. Sun, S., Chen, H.T., Zheng, W.J., Guo, G.Y.: Dispersion relation, propagation length and mode conversion of surface plasmon polaritons in silver double-nanowire systems. Opt. Exp. 21(12), 14591–14605 (2013)

    ADS  Article  Google Scholar 

  36. Tao, J., Wang, Q.J., Huang, X.G.: All-optical plasmonic switches based on coupled nano-disk cavity structures containing nonlinear material. Plasmonics 6(4), 753 (2011)

    Article  Google Scholar 

  37. Veronis, G., Fan, S.: Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides. Appl. Phys. Lett. 87(13), 131102 (2005)

    ADS  Article  Google Scholar 

  38. Wang, Y., Hong, X.: Mode conversion of metal–insulator–metal waveguide with gradient thickness medium. IEEE Photon. Technol. Lett. 29(17), 1443–1446 (2017)

    ADS  Article  Google Scholar 

  39. Wang, Y., Yan, X.: Mode conversion in metal–insulator–metal waveguide with a shifted cavity. Jpn. J. Appl. Phys. 57(1), 010303 (2018)

    ADS  Article  Google Scholar 

  40. Wei, L., Alkeskjold, T.T., Bjarklev, A.: Compact design of an electrically tunable and rotatable polarizer based on a liquid crystal photonic bandgap fiber. IEEE Photon. Technol. Lett. 21(21), 1633–1635 (2009)

    ADS  Article  Google Scholar 

  41. Wen, K., Yan, L., Pan, W., Luo, B., Guo, Z., Guo, Y.: Wavelength demultiplexing structure based on a plasmonic metal–insulator–metal waveguide. J. Opt. 14(7), 075001 (2012)

    ADS  Article  Google Scholar 

  42. Wolinski, T.R., Szaniawska, K., Bondarczuk, K., Lesiak, P., Domanski, A.W., Dabrowski, R., Wojcik, J.: Propagation properties of photonic crystal fibers filled with nematic liquid crystals. Optoelectron. Rev. 13(2), 177 (2005)

    Google Scholar 

  43. Zayats, A.V., Smolyaninov, I.I., Maradudin, A.A.: Nano-optics of surface plasmon polaritons. Phys. Rep. 408(3–4), 131–314 (2005)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Mohamed Farhat O. Hameed or Salah S. A. Obayya.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

In the original publication of the article, the article title was published with an error and the author name Salah S. A. Obayya was incorrectly written as Salah S. A. Salah.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kabeel, R.H., Areed, N.F.F., Hameed, M.F.O. et al. Efficient tunable plasmonic mode converters infiltrated with nematic liquid crystal layers. Opt Quant Electron 53, 436 (2021). https://doi.org/10.1007/s11082-021-03086-5

Download citation

Keywords

  • Plasmonic
  • Mode conversion
  • TM/TEM modes
  • Nematic liquid crystal (NLC)
  • Finite element method (FEM)