Skip to main content

A model of Gaussian laser beam self-trapping in optical tweezers for nonlinear particles

Abstract

The optical tweezers are used to trap the particles embedded in a suitable fluid. The optical trap efficiency is significantly enhanced for nonlinear particles which response to the Kerr effect. The optical transverse gradient force makes these particles’ mass density in trapping region increasing, and the Kerr medium can be created. When the laser Gaussian beam propagates through it, the self-focusing, and consequently self-trapping can appear. In this paper, a model describing the laser self-trapping in nonlinear particle solution of optical tweezers is proposed. The expressions for the Kerr effect, effective refractive index of nonlinear particle solution and the intensity distribution of reshaped Gaussian laser beam are derived, and the self-trapping of laser beam is numerically investigated. Finally, the guide properties of nonlinear particles-filled trapping region and guiding condition are analysed and discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Ahmed, F., Ahsani, V., Jo, S., Bredley, C., Toyserkani, E., G, M.B.: Measurement of in-fiber refractive index change using a mach-zehnder interferometer. IEEE Photon. Technol. Lett. 31, 74–77 (2019)

    ADS  Article  Google Scholar 

  2. Ashkin, A.: Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys. J . 61(2), 569–582 (2002)

    Article  Google Scholar 

  3. Badran, H.A., Hassan, Q.M.A., Al-Ahmad, A.Y., Emshary, C.A.: Laser-induced optical nonlinearities in orange G dye: polyacrylamide gel. Can. J. Phys. 89(12), 1219–1224 (2011)

    ADS  Article  Google Scholar 

  4. Cooper, A. et al.: Alkaline-Earth Atoms in Optical Tweezers, Phys. Rev. X 8 (2018) 041055

  5. Couris, S., Renard, M., Faucher, O., Lavorel, B., Chaux, R., Koudoumas, E., Michaut, X.: An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques. Chem. Phys. Lett. 369, 318–324 (2003)

    ADS  Article  Google Scholar 

  6. Devi, A., De, A.K.: Theoretical investigation on nonlinear optical effects in laser trapping of dielectric nanoparticles with ultrafast pulsed excitation. Opt. Exp. 24(19), 21485–21496 (2016)

    ADS  Article  Google Scholar 

  7. Gautam, R., et al.: Optical force-induced nonlinearity and self guiding of light in human red blood cell suspensions. Light Sci. Appl. 8, 1–9 (2019)

    Article  Google Scholar 

  8. Ho Q., Quang, Th. Thai Doan, T. Doan Quoc, V. Do Thanh, K. Bui Xuan, L. Ly Nguyen, and T. Nguyen Manh, (2020) Nonlinear microscope objective using thin layer of organic dye for optical tweezers, Eur. Phys. J. D 74:52.

  9. Jiang, Y., Narushima, T., Okamoto, H.: Nonlinear optical effects in trapping nanoparticles with femtosecond pulses. Nat. Phys. 6, 1005–1009 (2010)

    Article  Google Scholar 

  10. Kim, H. K., Joo, I-J., Song, S_H., Kim, P-S., Im, K-B. and Oh, C-H., Dependence of the Optical Trapping Efficiency on the Ratio of the Beam Radius-to-the Aperture Radius, J. Korean Phys. Soc. 43 (3) (2003) 348-351

  11. Lamhot, Y., Barak, A., Peleg, O. and Segev, M. (2010) Self-trapping of optical beam through thermophoresis, Phys. Rev. Lett. 105 163906

  12. Li, H., Qi, Y., Malallah, R., Ryle, J.P., Sheridan, J.T.: Self-trapping of optical beams in a self-written channel in a solid bulk photopolymer material. Proc. of SPIE 9508, 95080F (2015)

    ADS  Google Scholar 

  13. MacDonald, M.P., Peterson, I., Sibbett, W., Dholakia, K.: Trapping and manipulation of low-index particles in a two-dimensional interferometric optical trap. Opt. Lett. 26, 863–865 (2002)

    ADS  Article  Google Scholar 

  14. Nam, H.V., Le, C.T., Quy, H.Q.: The influence of the self-focusing effect on the optical force acting on dielectric particle embedded in Kerr medium. Commun. Phys., ISSN 0868–3166(23), 155–161 (2013)

    Article  Google Scholar 

  15. Nguyen, L.T., et al.: The numerical methods for analyzing the Z-scan data. J. Nonlinear Optic. Phys. Mat. 23, 1450020 (2014)

    ADS  Article  Google Scholar 

  16. Quy, H.Q.: Nonlinear optical tweezers as an optical method for control particles with high trap efficiency. Commun.phys. 29, 197–214 (2019)

    Article  Google Scholar 

  17. Quy H. Q. and Nam H. V., (2012) Influence of the Kerr effect on the optical force acting on the dielectric particle. Journal of Physical Science and Application, ISSN 2159 5348, 2(10): 414- 419

  18. Quy H. Q., Thang, N. M., and Sau, V. N. (2004) Creating free spatial soliton from Gaussian beam by Kerr Medium, Commun. Phys. Supplement pag.91–95.

  19. Quy H.Q., Hai H.D., Luu M.V., The Influence of Parameters on Stable-time “Pillar” in Optical Tweezer using Counter-propagating Pulsed Laser Beams, Computational methods for Science and Technology, Special Isue 2 (Poland) (2010) 61–66.

  20. Quang, Quy Ho, Doan, Thanh Thai, Quoc, Tuan Doan, Manh, Thang Nguyen: Nonlinear optical tweezers for longitudinal control of dielectric particles. Opt. Commun. 421, 94–98 (2018)

    ADS  Article  Google Scholar 

  21. Quang, Quy Ho, Doan, Thanh Thai, Quoc, Tuan Doan, Manh, Thang Nguyen: Enhance of optical trapping efficiency by nonlinear optical tweezers. Opt. Commun. 427, 341–347 (2018)

    ADS  Article  Google Scholar 

  22. Saleh, B.E., Teich, M.C.: Fundamentals of photonics: ray optics, pp. 1–40. John Wiley & Sons, INC., New York (1998)

    Google Scholar 

  23. Thai Dinh, T., Doan Quoc, K., Bui Xuan, K., Ho Quang, Q.: 3D controlling the bead linking to DNA molecule in a single-beam nonlinear optical tweezers. Opt. Quant Electron. 48, 1–15 (2016)

    ADS  Article  Google Scholar 

  24. Van Nguyen, T., Ho Quang, Q., Van Chu, L.: Ultrasonic-controlled microlens arrays in germanium for optical tweezers to sieve the micro-particles. Commun. Phys. 25, 157–163 (2015)

    Article  Google Scholar 

  25. Volpe, G., Volpe, G.: Simulation of Brownian particle in an optical trap. Am. J. Phys. 81, 224–230 (2013)

    ADS  Article  Google Scholar 

  26. Wilkes, Z.W., Varma, S., Chen, Y.-H., Milchberg, H.M., Jones T.G. and Ting, A. (2009) Direct measurements of the nonlinear index of refraction of water at 815 and 407 nm using-shot supercontinuum spectral interferometry, Appl. Phys. Let. 94, 211102.

Download references

Acknowledgements

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 103.03–2018.342.

Author information

Affiliations

Authors

Contributions

The idea was proposed by Quy Ho Quang, and Thang Nguyen Manh, the results were done and analysed by Thang Nguyen Manh, Quy Ho Quang. The paper was written by all authors.

Corresponding author

Correspondence to Thang Nguyen Manh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Quang, Q.H., Doan, T.T., Xuan, K.B. et al. A model of Gaussian laser beam self-trapping in optical tweezers for nonlinear particles. Opt Quant Electron 53, 418 (2021). https://doi.org/10.1007/s11082-021-03074-9

Download citation

Keywords

  • Nonlinear optical tweezers
  • Kerr effect
  • Self-focusing
  • Self-trapping
  • Organic dye