Skip to main content
Log in

Multi-feature driven active contour segmentation model for infrared image with intensity inhomogeneity

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Active contour model is one of the most widely used image segmentation tools at present, but the existing methods only utilize single feature information of image to minimize the energy function, which is easy to cause false segmentations in infrared (IR) images. In this paper, we propose a multi-feature driven active contour segmentation model to handle IR images with intensity inhomogeneity. Firstly, an especially-designed signed pressure force (SPF) function is constructed by combining the global information calculated by global average gray information and the local multi-feature information calculated by local entropy, local standard deviation and gradient information. Then, we draw upon adaptive weight coefficient computed by local range to incorporate the afore-mentioned global term and local term. Next, the SPF function is substituted into the level set formulation (LSF) for further evolution. Finally, the LSF converges after a finite number of iterations and the IR image segmentation result is obtained from the corresponding convergence result. Experimental results demonstrate that the presented method outperforms typical models in terms of precision rate and overlapping rate in IR test images. The code is available at: https://github.com/MinjieWan/MFDACM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. In: Proceedings of IEEE International Conference on Computer Vision, pp. 694–699. IEEE (1995)

  • Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  ADS  Google Scholar 

  • Ding, K., Xiao, L., Weng, G.: Active contours driven by region-scalable fitting and optimized Laplacian of gaussian energy for image segmentation. Signal Process. 134, 224–233 (2017)

    Article  Google Scholar 

  • Ding, K., Xiao, L., Weng, G.: Active contours driven by local pre-fitting energy for fast image segmentation. Pattern Recogn. Lett. 104, 29–36 (2018)

    Article  ADS  Google Scholar 

  • Dong, E.Z., Feng, Q., Yu, X., Tong, J.G., Gu, H.Q.: Improved contour extraction algorithm of infrared images based on active contour models. Laser Infrared 3, 25 (2017)

    Google Scholar 

  • Fang, J., Liu, H., Zhang, L., Liu, J., Liu, H.: Active contour driven by weighted hybrid signed pressure force for image segmentation. IEEE Access 7, 97492–97504 (2019a)

    Article  Google Scholar 

  • Fang, L., Qiu, T., Zhao, H., Lv, F.: A hybrid active contour model based on global and local information for medical image segmentation. Multidimen. Syst. Signal Process. 30(2), 689–703 (2019b)

    Article  MathSciNet  Google Scholar 

  • Fang, J., Liu, H., Liu, J., Zhou, H., Zhang, L., Liu, H.: Fuzzy region-based active contour driven by global and local fitting energy for image segmentation. Appl. Soft Comput. 100, 106982 (2021)

    Article  Google Scholar 

  • Fengler, J., Westwick, P., Bailey, A.E., Cottle, P.: Imaging system for combined full-color reflectance and near-infrared imaging (2015). US Patent 9,173,554

  • Hagagg, S., Khalifa, F., Abdeltawab, H., Elnakib, A., Abdelazim, M., Ghazal, M., Sandhu, H., El-Baz, A.: A cnn-based framework for automatic vitreous segemntation from oct images. In: 2019 IEEE International Conference on Imaging Systems and Techniques (IST), pp. 1–5. IEEE (2019)

  • Huang, G., Ji, H., Zhang, W.: A fast level set method for inhomogeneous image segmentation with adaptive scale parameter. Magn. Reson. Imaging 52, 33–45 (2018)

    Article  Google Scholar 

  • Izadi, H., Sadri, J., Hormozzade, F., Fattahpour, V.: Altered mineral segmentation in thin sections using an incremental-dynamic clustering algorithm. Eng. Appl. Artif. Intell. 90, 103466 (2020)

    Article  Google Scholar 

  • Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)

    Article  Google Scholar 

  • Lee, L.K., Liew, S.C., Thong, W.J.: A review of image segmentation methodologies in medical image. In: Advanced Computer and Communication Engineering Technology, pp. 1069–1080. Springer (2015)

  • Li, C., Kao, C.Y., Gore, J.C., Ding, Z.: Minimization of region-scalable fitting energy for image segmentation. IEEE Trans. Image Process. 17(10), 1940–1949 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  • Li, C., Huang, R., Ding, Z., Gatenby, J.C., Metaxas, D.N., Gore, J.C.: A level set method for image segmentation in the presence of intensity inhomogeneities with application to mri. IEEE Trans. Image Process. 20(7), 2007–2016 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  • Liu, S., Peng, Y.: A local region-based Chan-Vese model for image segmentation. Pattern Recogn. 45(7), 2769–2779 (2012)

    Article  ADS  Google Scholar 

  • Liu, H., Fang, J., Zhang, Z., Lin, Y.: A novel active contour model guided by global and local signed energy-based pressure force. IEEE Access 8, 59412–59426 (2020)

    Article  Google Scholar 

  • Lu, C.S., Chung, P.C., Chen, C.F.: Unsupervised texture segmentation via wavelet transform. Pattern Recogn. 30(5), 729–742 (1997)

    Article  ADS  Google Scholar 

  • Meiju, L., Rui, Z., Xifeng, G., Junrui, Z.: Application of improved otsu threshold segmentation algorithm in mobile phone screen defect detection. In: 2020 Chinese Control And Decision Conference (CCDC), pp. 4919–4924. IEEE (2020)

  • Min, H., Jia, W., Zhao, Y.: A region-bias fitting model based level set for segmenting images with intensity inhomogeneity. In: Proceedings of the 2nd International Symposium on Image Computing and Digital Medicine, pp. 83–87 (2018)

  • Mukherjee, S., Acton, S.T.: Region based segmentation in presence of intensity inhomogeneity using Legendre polynomials. IEEE Signal Process. Lett. 22(3), 298–302 (2014)

    Article  ADS  Google Scholar 

  • Naz, S., Majeed, H., Irshad, H.: Image segmentation using fuzzy clustering: A survey. In: 2010 6th International Conference on Emerging Technologies (ICET), pp. 181–186. IEEE (2010)

  • Paragios, N., Mellina-Gottardo, O., Ramesh, V.: Gradient vector flow fast geodesic active contours. In: Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, vol. 1, pp. 67–73. IEEE (2001)

  • Ronfard, R.: Region-based strategies for active contour models. Int. J. Comput. Vis. 13(2), 229–251 (1994)

    Article  Google Scholar 

  • Shan, X., Gong, X., Nandi, A.K.: Active contour model based on local intensity fitting energy for image segmentation and bias estimation. IEEE Access 6, 49817–49827 (2018)

    Article  Google Scholar 

  • Wan, M., Gu, G., Sun, J., Qian, W., Ren, K., Chen, Q., Maldague, X.: A level set method for infrared image segmentation using global and local information. Remote Sens. 10(7), 1039 (2018)

    Article  ADS  Google Scholar 

  • Wang, Q.: The improvement of gac model for image segmentation. In: 2013 IEEE 4th International Conference on Software Engineering and Service Science, pp. 1021–1024. IEEE (2013)

  • Wang, C., Wang, Y., Kaba, D., Wang, Z., Liu, X., Li, Y.: Automated layer segmentation of 3d macular images using hybrid methods. In: International Conference on Image and Graphics, pp. 614–628. Springer (2015)

  • Wang, L., Zhang, L., Yang, X., Yi, P., Chen, H.: Level set based segmentation using local fitted images and inhomogeneity entropy. Signal Process. 167, 107297 (2020)

    Article  Google Scholar 

  • Xu, D., Zhang, G., You, Z.: Adaptive segmentation and feature acquisition of test sequence for momentum wheel. IEEE Access 7, 153278–153286 (2019a)

    Article  Google Scholar 

  • Xu, J., Wang, H., Cui, C., Liu, P., Zhao, Y., Li, B.: Oil spill segmentation in ship-borne radar images with an improved active contour model. Remote Sens. 11(14), 1698 (2019b)

    Article  ADS  Google Scholar 

  • Yang, Y., Lin, L.: Automatic pedestrians segmentation based on machine learning in surveillance video. In: 2019 IEEE International Conference on Computational Electromagnetics (ICCEM), pp. 1–3. IEEE (2019)

  • Zhang, K., Zhang, L., Song, H., Zhou, W.: Active contours with selective local or global segmentation: a new formulation and level set method. Image Vis. Comput. 28(4), 668–676 (2010)

    Article  Google Scholar 

  • Zhang, K., Zhang, L., Lam, K.M., Zhang, D.: A level set approach to image segmentation with intensity inhomogeneity. IEEE Trans. Cybern. 46(2), 546–557 (2015)

    Article  Google Scholar 

  • Zhang, T., Han, J., Zhang, Y., Bai, L.: An adaptive multi-feature segmentation model for infrared image. Opt. Rev. 23(2), 220–230 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by National Natural Science Foundation of China (No. 62001234), Natural Science Foundation of Jiangsu Province (No. BK20200487), China Postdoctoral Science Foundation (No. 2020M681597), Postdoctoral Science Foundation of Jiangsu Province (No. 2020Z051), Shanghai Aerospace Science and Technology Innovation Foundation (No. SAST2020-071), and the Fundamental Research Funds for the Central Universities (No. JSGP202102).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Minjie Wan or Guohua Gu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Q., Zhou, W., Wan, M. et al. Multi-feature driven active contour segmentation model for infrared image with intensity inhomogeneity. Opt Quant Electron 53, 367 (2021). https://doi.org/10.1007/s11082-021-03000-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03000-z

Keywords

Navigation