Skip to main content
Log in

Simulink implementation of a new optoelectronic integrated circuit: stability analysis and infinite-scroll attractor

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper a 6-D optoelectronic system consisting of an optical injected semiconductor laser driven by a resonant tunneling diode is reported. A stability analysis of the hybrid system is analytically and numerically performed and paramount role of the effective gain coefficient is stuck out in the framework of new stability control. As a result, this parameter allows improving the accuracy of the stability study by circumscribing locked and unlocked regions. Besides, a narrow area of stability is pointed up within the sea of unstable points from which a complex fractal attractor so-called infinite-scroll attractor is highligted. Thereby, Simulink shows generation effectiveness of infinite-scroll attractor erratically interpersed by laminar phases. Also dynamics of Lyapunov exponents has confirmed that it refers to a strange fractal attractor. Moreover chaos control is structurally carried out by direct current polarisation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Daly, A., Roycroft, B., Corbett, B.: Stable locking phase limits of optically injected semiconductor lasers. Opt. Express 21, 30126–30139 (2013)

    Article  ADS  Google Scholar 

  • Essebe, D.E., Mengue, A.D., Essimbi, B.Z.: Stochastic behavior of an external optically injected single-mode semiconductor laser including Langevin noise sources. Phys. Scr. 94, 115501-1-30 (2019)

    Article  ADS  Google Scholar 

  • Essebe, D.E., Mengue, A.D., Essimbi, B.Z.: Multiscroll chaotic attractors in optical injected semiconductor laser driven by a resonant tunneling diode current. Optik 212, 164740-1-8 (2020)

    ADS  Google Scholar 

  • Figueiredo, J.M.L., et al.: Self-oscillation and period adding from resonant tunnelling diode-laser diode circuit. Electron. Lett. 44, 876–877 (2008)

    Article  ADS  Google Scholar 

  • Figueiredo, J.M.L., Ironside, C.N., Stanley, C.N.: Electric field switching in a resonant tunneling diode electroabsorption modulator. IEEE J. Quant. Electr. 37, 1547–1552 (2001)

    Article  ADS  Google Scholar 

  • Gokyildirim, A., et al.: A weak signal detection application based on hyperchaotic Lorenz system. Tech. Gazette 25, 701–708 (2018)

    Google Scholar 

  • Hamsa, A., et al.: A new chaotic map for secure transmission. Telkomnika 16, 1135–1142 (2018)

    Article  Google Scholar 

  • Ironside, C., Romeira, B., Figueiredo, J.: Resonant Tunneling Diode Photonics: Devices and Applications. Iop Concise Physics, Concise edition (2019)

    Book  Google Scholar 

  • Li, F., Yao, C.: The infinite-scroll attractor and energy transition in chaotic circuit. Nonlinear Dyn. 84, 2305–2315 (2016)

    Article  MathSciNet  Google Scholar 

  • Ma, J., et al.: Selection of multi-scroll attractors in Jerk circuits and their verification using Pspice. Nonlinear Dyn. 76, 1951–1962 (2014)

    Article  Google Scholar 

  • Ma, J., Zhou, P., Ahmad, B., Ren, G., Wang, C.: Chaos and multi-scroll attractors in RCL-shunted junction coupled Jerk circuit connected by memristor. PloS one 13(1), e0191120-1-21 (2018)

    Google Scholar 

  • Mengue, A.D., Essimbi, B.Z.: Complex chaos and bifurcations of semiconductor lasers subjected to optical injection. Opt. Quant. Electron. 42, 389–407 (2011)

    Article  Google Scholar 

  • Mengue, A.D., Essimbi, Z.B.: Symmetry chaotic attractors and bursting dynamics of semiconductor lasers subjected to optical injection. Chaos 22, 013113-1-10 (2012a)

    Article  ADS  MathSciNet  Google Scholar 

  • Mengue, A.D., Essimbi, B.Z.: Stability and on-off chaotic states mechanisms of semiconductor lasers with optical injectionon the new modifiedrate equation model. Phys. Scr. 85, 025404 (2012b)

    Article  ADS  Google Scholar 

  • Ohtsubo, J.: Semiconductor Lasers Instability and Chaos. Springer, Berlin (2006)

    MATH  Google Scholar 

  • Romeira, B., et al.: Synchronisation and chaos in a laser diode driven by a resonant tunnelling diode. IET Optoelectron. 2, 211–215 (2008)

    Article  Google Scholar 

  • Romeira, B., et al.: Delayed feedback dynamics of liénard-type resonant tunneling-photo-detector optoelectronic oscillators. IEEE J. Quant. Electro. 49, 31–42 (2013)

    Article  ADS  Google Scholar 

  • Romeira, B., Figueiredo, J., Javaloyes, J.: Delay dynamics of neuromorphic optoelectronic nanoscale resonators: perspectives and applications. Chaos 27, 114323-1-18 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  • Sun, G., et al.: Generating multi-scroll chaotic attractors via switched fractional systems circuits. Syst. Sign. Process. 30, 1183–1195 (2011)

    Article  Google Scholar 

  • Wang, C.H., Xia, H., Zhou, L.: A memristive hyperchaotic multiscroll jerk system with controllable scroll numbers. Int. J. Bifurcat. Chaos 27, 1750091-1-15 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Mengue.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing interests and the work covered in this manuscript has been conducted with the ethical approval.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The elements \({a}_{1}\), \({a}_{2}\), \({a}_{3}\), \({a}_{4}\) and \({a}_{5}\) of (4) and (5) are given by.

$$ a_{0} = 1,a_{1} = - 2\beta G_{0} \Delta n_{0} + mr + 3B_{0} m^{{ - 1}} \left( {3x_{0}^{2} - 2(a + b)x_{0} + ab} \right) + \frac{{\gamma _{0} }}{{1 - \delta }}\left( {\sigma B_{0} x_{0} (x_{0} - a)(x_{0} - b) - \delta } \right), $$
$$ \begin{aligned} a_{2} = & 1 + 3rB_{0} \left( {3x_{0}^{2} - 2(a + b)x_{0} + ab} \right) + 2\beta G_{0} \gamma _{0} \left( {\sigma B_{0} x_{0} (x_{0} - a)(x_{0} - b) - n_{0} } \right) + \left( {\alpha G_{0} \Delta n_{0} - \Delta \Omega } \right)^{2} \\ & {\text{ + }}\beta ^{2} (G_{0} )^{2} (\Delta n_{0} )^{2} - \left\{ {mr + 3B_{0} m^{{ - 1}} \left( {3x_{0}^{2} - 2(a + b)x_{0} + ab} \right)} \right\}\left\{ {2\beta G_{0} \Delta n_{0} - \frac{{\gamma _{0} }}{{1 - \delta }}\left( {\sigma B_{0} x_{0} (x_{0} - a)(x_{0} - b) - \delta } \right)} \right\} \\ & - 2\beta G_{0} \gamma _{0} \left( {\frac{{\sigma B_{0} x_{0} (x_{0} - a)(x_{0} - b) - \delta }}{{1 - \delta }}} \right)\Delta n_{0} \\ \end{aligned} $$
$$ \begin{aligned} a_{3} & = - 2\alpha G_{0} \gamma _{0} \left( {\alpha G_{0} \Delta n_{0} - \Delta \Omega } \right)\left( {\sigma B_{0} x_{0} (x_{0} - a)(x_{0} - b) - n_{0} } \right) - 2\beta ^{2} (G_{0} )^{2} \gamma _{0} \left( {\sigma B_{0} x_{0} (x_{0} - a)(x_{0} - b) - n_{0} } \right)\Delta n_{0} \\ & + \frac{{\gamma _{0} }}{{1 - \delta }}\left( {\sigma B_{0} x_{0} (x_{0} - a)(x_{0} - b) - \delta } \right)\left[ {1 + 3rB_{0} \left( {3x_{0}^{2} - 2(a + b)x_{0} + ab} \right) + \beta ^{2} (G_{0} )^{2} (\Delta n_{0} )^{2} + \left( {\alpha G_{0} \Delta n_{0} - \Delta \Omega } \right)^{2} } \right] \\ & + \left\{ {2\beta G_{0} \gamma _{0} \left( {\sigma B_{0} x_{0} (x_{0} - a)(x_{0} - b) - n_{0} } \right) - 2\beta G_{0} \frac{{\gamma _{0} }}{{1 - \delta }}\left( {\sigma B_{0} x_{0} (x_{0} - a)(x_{0} - b) - \delta } \right)\Delta n_{0} } \right. \\ & \left. { + \beta ^{2} (G_{0} )^{2} (\Delta n_{0} )^{2} + \left( {\alpha G_{0} \Delta n_{0} - \Delta \Omega } \right)^{2} } \right\} \times \left\{ {mr + 3B_{0} m^{{ - 1}} \left( {3x_{0}^{2} - 2(a + b)x_{0} + ab} \right)} \right\} + \\ & - 2\beta G_{0} \left[ {1 + 3rB_{0} \left( {3x_{0}^{2} - 2(a + b)x_{0} + ab} \right)} \right]\Delta n_{0} \\ \end{aligned} $$
$$ \begin{aligned} a_{4} = & \left\{ { - 2\alpha G_{0} \gamma _{0} \left( {\alpha G_{0} \Delta n_{0} - \Delta \Omega } \right)\left( {\sigma B_{0} x_{0} (x_{0} - a)(x_{0} - b) - n_{0} } \right)} \right. \\ & - 2\beta ^{2} (G_{0} )^{2} \gamma _{0} \left( {\sigma B_{0} x_{0} (x_{0} - a)(x_{0} - b) - n_{0} } \right)\Delta n_{0} + \\ & \left. { + \frac{{\gamma _{r} }}{{1 - \delta }}\left( {\sigma B_{0} x_{0} (x_{0} - a)(x_{0} - b) - \delta } \right)\left[ {\beta ^{2} (G_{0} )^{2} (\Delta n_{0} )^{2} + \left( {\alpha G_{0} \Delta n_{0} - \Delta \Omega } \right)^{2} } \right]} \right\} \\ & \times \left\{ {mr + 3B_{0} m^{{ - 1}} \left( {3x_{0}^{2} - 2(a + b)x_{0} + ab} \right)} \right\} \\ & + \left\{ {2\beta G_{0} \gamma _{0} \left( {\sigma B_{0} x_{0} (x_{0} - a)(x_{0} - b) - n_{0} } \right)} \right. - 2\beta G_{0} \gamma _{0} \left( {\frac{{\sigma B_{0} x_{0} (x_{0} - a)(x_{0} - b) - \delta }}{{1 - \delta }}} \right)\Delta n_{0} \\ & {\text{ + }}\left. {\beta ^{2} (G_{0} )^{2} (\Delta n_{0} )^{2} + \left( {\alpha G_{0} \Delta n_{0} - \Delta \Omega } \right)^{2} } \right\} \times \left\{ {1 + 3rB_{0} \left( {3x_{0}^{2} - 2(a + b)x_{0} + ab} \right)} \right\}, \\ \end{aligned} $$
$$ \begin{aligned} {\text{ }}a_{5} = & - 2\alpha G_{0} \gamma _{0} \left( {\alpha G_{0} \Delta n_{0} - \Delta \Omega } \right)\left( {\sigma B_{0} x_{0} (x_{0} - a)(x_{0} - b) - n_{0} } \right)\left\{ {1 + 3rB_{0} \left( {3x_{0}^{2} - 2(a + b)x_{0} + ab} \right)} \right\} \\ & - 2\beta ^{2} (G_{0} )^{2} \gamma _{0} \left( {\sigma B_{0} x_{0} (x_{0} - a)(x_{0} - b) - n_{0} } \right)\left\{ {1 + 3rB_{0} \left( {3x_{0}^{2} - 2(a + b)x_{0} + ab} \right)} \right\}\Delta n_{0} \\ & \frac{{\gamma _{0} }}{{1 - \delta }}\left( {\sigma B_{0} x_{0} (x_{0} - a)(x_{0} - b) - \delta } \right)\left[ {\beta ^{2} (G_{0} )^{2} (\Delta n_{0} )^{2} + \left( {\alpha G_{0} \Delta n_{0} - \Delta \Omega } \right)^{2} } \right]\left\{ {1 + 3rB_{0} \left( {3x_{0}^{2} - 2(a + b)x_{0} + ab} \right)} \right\}. \\ \end{aligned} $$

where \({x}_{0}\) and \({n}_{0}\) denote the steady states of the normalized electrical voltage and carrier density respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Essebe, D.E., Mengue, A.D. & Essimbi, B.Z. Simulink implementation of a new optoelectronic integrated circuit: stability analysis and infinite-scroll attractor. Opt Quant Electron 53, 388 (2021). https://doi.org/10.1007/s11082-021-02990-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-02990-0

Keywords

Navigation