Skip to main content
Log in

Entanglement dynamics of a dispersive system of two driven qubits localized in coherently two linked optical cavities: two dispersive spatial distant driven Jaynes–Cummings cells

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The Hamiltonian for a system of two two-level atoms separately located in two cavities coupled through the overlap of the evanescent cavity fields in presence of an external classical fields is introduced. It is simplified by using unitary canonical transformations for both the atomic and photonic modes. The atomic population inversion and the degree of entanglement are considered. Different interactions are addressed within a temporal evolution of the system in correspondence with three dispersive regimes limits. Analytical expressions of the coefficients of the time dependent wavefunctions of the different Hamiltonians are derived. The influences of the photon hopping strength, detuning and the couplings of the external classical fields on the behavior of the atomic population inversion and the atomic entropies and degree of entanglement are investigated. The interrelation between the 1st-atom entanglement and the atomic population inversion is noted. General conclusions reached are illustrated through numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdalla, M.S., Ahmed, M.M.A.: Some statistical properties for a spin-\(\frac{1}{2}\) particle coupled to two spirals. Opt. Commun. 285, 3578–3586 (2012)

    Article  ADS  Google Scholar 

  • Abdalla, M.S., Obada, A.-S.F., Khalil, E.M.: Exact treatment of the Jaynes–Cummings model under the action of an external classical field. Ann. Phys. 326, 2486–2498 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Abdalla, M.S., Obada, A.-S.F., Khalil, E.M., Ali, S.I.: The influence of phase damping on a two-level atom in the presence of the classical laser field. Laser Phys. 23, 115201 (2013)

    Article  ADS  Google Scholar 

  • Agarwal, G.S., Puri, R.R.: Collapse and revival phenomenon in the evolution of a resonant field in a Kerr-like medium. Phys. Rev. A 39, 2969–2977 (1989)

    Article  ADS  Google Scholar 

  • Alsingh, P., Zubairy, M.S.: Collapse and revivals in a two-photon absorption process. J. Opt. Soc. Am. B 4, 177–184 (1987)

    Article  ADS  Google Scholar 

  • Alsing, P., Guo, D.-S., Carmichael, H.J.: Dynamic Stark effect for the Jaynes–Cummings system. Phys. Rev. A 45, 5135–5143 (1992)

    Article  ADS  Google Scholar 

  • Angelakis, D.G., Santos, M.F., Bose, S.: Photon-blockade-induced Mott transitions and XY spin models in coupled cavity arrays. Phys. Rev. A 76, 031805(R) (2007)

    Article  ADS  Google Scholar 

  • Araki, H., Lieb, E.: Entropy inequalities. Commun. Math. Phys. 18, 160–170 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  • Armani, D.K., Kippenberg, T.J., Spillane, S.M., Vahala, K.J.: Ultra-high-Q toroid microcavity on a chip. Nature (London) 421, 925–928 (2003)

    Article  ADS  Google Scholar 

  • Bashkirov, E.K.: Entanglement in the degenerate two-photon Tavis–Cummings model. Phys. Scr. 82, 015401 (2010)

    Article  ADS  MATH  Google Scholar 

  • Bashkirov, E.K., Rusakova, M.S.: Atom-field entanglement in two-atom Jaynes–Cummings model with nondegenerate two-photon transitions. Opt. Commun. 281, 4380–4386 (2008)

    Article  ADS  Google Scholar 

  • Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996)

    Article  ADS  Google Scholar 

  • Blanco, P., Mundarain, D.: Faithful entanglement transference from qubits to continuous variable systems. J. Phys. B: At. Mol. Opt. Phys. 44, 105501 (2011)

    Article  ADS  Google Scholar 

  • Bougouffa, S.: Negativity dynamics of bipartite field states inside the cavities in squeezed vacuum reservoirs. AIP Conf. Proc. 1370, 192–198 (2011)

    Article  ADS  Google Scholar 

  • Bougouffa, S., Hindi, A.: Entanglement dynamics of a bipartite system in squeezed vacuum reservoirs. Phys. Scr. T143, 014006 (2011)

    Article  ADS  Google Scholar 

  • Bougouffa, S., Ficek, Z.: Entanglement transfer between bipartite systems. Phys. Scr. T147, 014005 (2012)

    Article  ADS  Google Scholar 

  • Bougouffa, S., Ficek, Z.: Atoms versus photons as carriers of quantum states. Phys. Rev. A 88, 022317 (2013)

    Article  ADS  Google Scholar 

  • Briegel, H.J., Dür, W., Cirac, J.I., Zoller, P.: Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998)

    Article  ADS  Google Scholar 

  • Buck, B., Sukumar, C.V.: Exactly soluble model of atom-phonon coupling showing periodic decay and revival. Phys. Lett. A 81, 132–135 (1981)

    Article  ADS  Google Scholar 

  • Buck, B., Sukumar, C.V.: Solution of the Heisenberg equations for an atom interacting with radiation. J. Phys. A: Math. Gen. 7, 877–883 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  • Cao, B.-L., Shi, Y., Jiang, D.-G.: The dynamics of quantum correlations between two atoms in two coupled cavities. Int. J. Theor. Phys. 53, 1920–1929 (2014)

    Article  MATH  Google Scholar 

  • Chakrabarti, R., Sreekumari, G.: Propagation of single-excitation quantum states through Jaynes–Cummings–Hubbard arrays. J. Phys. B: At. Mol. Opt. Phys. 44, 11505 (2011)

    Article  Google Scholar 

  • Chan, S., Reid, M.D., Ficek, Z.: Entanglement evolution of two remote and non-identical Jaynes–Cummings atoms. J. Phys. B: At. Mol. Opt. Phys. 42, 065507 (2009)

    Article  ADS  Google Scholar 

  • Chen, Q.H., Yang, Y., Liu, T., Wang, K.L.: Entanglement dynamics of two independent Jaynes–Cummings atoms without the rotating-wave approximation. Phys. Rev. A 82, 052306 (2010)

    Article  ADS  Google Scholar 

  • Cho, J., Angelakis, D.G., Bose, S.: Heralded generation of entanglement with coupled cavities. Phys. Rev. A 78, 022323 (2008)

    Article  ADS  Google Scholar 

  • Chough, Y.T., Carmichael, H.J.: Nonlinear oscillator behavior in the Jaynes–Cummings model. Phys. Rev. A. 54, 1709–1714 (1996)

    Article  ADS  Google Scholar 

  • Christandl, M., Datta, N., Ekert, A., Landahl, A.J.: Perfect state transfer in quantum spin networks. Phys. Rev. Lett. 92, 187902 (2004)

    Article  ADS  Google Scholar 

  • Cirac, J.I., Zoller, P., Kimble, H.J., Mabuchi, H.: Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997)

    Article  ADS  Google Scholar 

  • Cirac, J.I., Ekert, A.K., Huelga, S.F., Macchiavello, C.: Distributed quantum computation over noisy channels. Phys. Rev. A. 59, 4249–4254 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  • Deng, Z.J., Feng, M., Gao, K.L.: Preparation of entangled states of four remote atomic qubits in decoherence-free subspace. Phys. Rev. A 75, 024302 (2007)

    Article  ADS  Google Scholar 

  • Deutsch, D., Ekert, A., Jozsa, R., Macchiavello, C., Popescu, S., Sanpera, A.: Quantum privacy amplification and the security of quantum cryptography over noisy channels. Phys. Rev. Lett. 77, 2818–2821 (1996)

    Article  ADS  Google Scholar 

  • Di. Fidio, C., Vogel, W.: Entanglement signature in the mode structure of a single photon. Phys. Rev. A 79, 050303(R) (2009)

    Article  Google Scholar 

  • Dutra, S.M., Knight, P.L., Moya-Cessa, H.: Discriminating field mixtures from macroscopic superpositions. Phys. Rev. A. 48, 3168–3173 (1993)

    Article  ADS  Google Scholar 

  • Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

  • El-Orany, F.A.A.: Variance squeezing and entanglement of the XX central spin model. J. Phys. A: Math. Theor. 44(13), 035302 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Enríyquez, M., Quintana, C., Rosas-Ortiz, O.: Time-evolution of entangled bipartite atomic systems in quantized radiation fields. J. Phys. Conf. Ser. 512, 012022 (2014)

    Article  Google Scholar 

  • Fischer, D.G., Mack, H., Freyberger, M.: Transfer of quantum states using finite resources. Phys. Rev. A 63, 042305 (2001)

    Article  ADS  Google Scholar 

  • Greentree, A.D., Tahan, C., Cole, J.H., Hollenberg, L.C.L.: Quantum phase transitions of light. Nat. Phys. 2, 856–861 (2006)

    Article  Google Scholar 

  • Hanoura, S.A., Ahmed, M.M.A., Khalil, E.M., Obada, A.-S.F.: Single-Atom Entanglement for a System of Directly Linked Two Cavities in the Presence of an External Classical Field: Effect of Atomic Coherence. Fortschr. Phys. 67, 1800101 (2019)

  • Hanoura, S.A., Ahmed, M.M.A., Khalil, E.M., Obada, A.-S.F.: Collapses-revivals phenomenon of a system of a two-linked cavities in the presence of an external classical field. Phys. E Low Dimens. Syst. Nanostruct. 117, 113163 (2020)

    Article  Google Scholar 

  • Hartmann, M.J., Brandao, F.G.S.L., Plenio, M.B.: Strongly interacting polaritons in coupled arrays of cavities. Nat. Phys. 2, 849–855 (2006)

    Article  Google Scholar 

  • Hartmann, M.J., Brandao, F.G.S.L., Plenio, M.B.: Quantum many-body phenomena in coupled cavity arrays. Laser Photonics Rev. 2, 527–556 (2008)

    Article  ADS  Google Scholar 

  • Hu, X.M., Zou, J.H.: Quantum-beat lasers as bright sources of entangled sub-Poissonian light. Phys. Rev. A 78, 045801 (2008)

    Article  ADS  Google Scholar 

  • Hu, Y.H., Wang, J.-Q.: Quantum correlations between two non-interacting atoms under the influence of a thermal environment. Chin. Phys. B 21, 014203 (2012)

    Article  ADS  Google Scholar 

  • Jaynes, E.T., Cummings, F.W.: Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE 51, 89–109 (1963)

    Article  Google Scholar 

  • Jennewein, T., Simon, C., Weihs, G., Weinfurter, H., Zeilinger, A.: Quantum cryptography with entangled photons. Phys. Rev. Lett. 84, 4729–4732 (2000)

    Article  ADS  Google Scholar 

  • James, D. F. V., Jerke, J.: Effective hamiltonian theory and its applications in quantum information. Can. J. Phys. 85, 625 (2007)

  • Joshi, A.: Nonlinear dynamical evolution of the driven two-photon Jaynes–Cummings model. Phys. Rev. A 62(7p), 043812 (2000)

    Article  ADS  Google Scholar 

  • Jun, P., Wu, Y.-W., Li, X.-J.: Quantum dynamic behaviour in a coupled cavities system. Chin. Phys. B 21, 060302 (2012)

    Article  Google Scholar 

  • Jyotsna, I.V., Agarwal, G.S.: The Jaynes–Cummings model with continuous external pumping. Opt. Commun. 99, 344–349 (1993)

    Article  ADS  Google Scholar 

  • Khalil, E.M.: Entanglement of a two two-level atom interacting with electromagnetic field in the presence of converter terms. Optik 124, 1820–1826 (2013)

  • Khalil, E.M.: Influence of the external classical field on the entanglement of a two-level atom. Int. J. Theor. Phys. 52, 1122–1131 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Kimble, H.J.: The quantum internet. Nature 453, 1023–1030 (2008)

    Article  ADS  Google Scholar 

  • Lee, J., Paternostro, M., Kim, M.S., Bose, S.: Entanglement reciprocation between qubits and continuous variables. Phys. Rev. Lett. 96, 080501 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  • Leibfried, D., DeMarco, B., Meyer, V., Lucas, D., Barrett, M., Britton, J., Itano, W.M., Jelenkovic, B., Langer, C., Rosenband, T., Wineland, D.J.: Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate. Nature 422, 412–415 (2003)

    Article  ADS  Google Scholar 

  • Li, X., Hu, X.M.: Tripartite entanglement in quantum-beat lasers. Phys. Rev. A 80, 023815 (2009)

    Article  ADS  Google Scholar 

  • Li, G.-X., Tan, H., Macovei, M.: Enhancement of entanglement for two-mode fields generated from four-wave mixing with the help of the auxiliary atomic transition. Phys. Rev. A 76, 053827 (2007)

    Article  ADS  Google Scholar 

  • Li, G.-X., Ke, S., Ficek, Z.: Generation of pure continuous-variable entangled cluster states of four separate atomic ensembles in a ring cavity. Phys. Rev. A 79, 033827 (2009)

    Article  ADS  Google Scholar 

  • Lougovski, P., Casagrande, F., Lulli, A., Englert, B.-G., Solano, E., Walther, H.: Solvable model of a strongly driven micromaser. Phys. Rev. A. 69, 023812 (2004)

    Article  ADS  Google Scholar 

  • Louisell, W.H.: Quantum Statistical Properties of Radiation. Wiley, Toronto (1973)

    MATH  Google Scholar 

  • Lü, X.-Y., Si, L.-G., Wang, M., Zhang, S.-Z., Yang, X.: Generation of entanglement between two spatially separated atoms via dispersive atom-field interaction. J. Phys. B: At. Mol. Opt. Phys. 41(23), 235502 (2008)

    Article  ADS  Google Scholar 

  • Mahmood, S., Ashraf, M.M.: Squeezing of an effective dipole in a non-degenerate two-photon Jaynes–Cummings model with Stark shift. Opt. Commun. 132, 457–463 (1996)

    Article  ADS  Google Scholar 

  • Nohama, F.K., Roversi, J.A.: Two-qubit state transfer between trapped ions using electromagnetic cavities coupled by an optical fibre. J. Phys. B: At. Mol. Opt. Phys. 41, 045503 (2008)

    Article  ADS  Google Scholar 

  • Obada, A.-S.F., Hanoura, S.A., Eied, A.A.: Entanglement of a multi-photon three-level atom interacting with a single-mode field in the presence of nonlinearities. Eur. Phys. J. D 66, 221 (2012a)

    Article  ADS  Google Scholar 

  • Obada, A.-S.F., Hanoura, S.A., Eied, A.A.: Quantum entropy of a four-level atom with arbitrary nonlinearities. Int. J. Theor. Phys. 51, 2665–2680 (2012b)

    Article  MATH  Google Scholar 

  • Obada, A.-S.F., Hanoura, S.A., Eied, A.A.: Entanglement for a general formalism of a three-level atom in a V-configuration interacting nonlinearly with a non-correlated two-mode field. Laser Phys. 23, 025201 (2013a)

    Article  ADS  Google Scholar 

  • Obada, A.-S.F., Hanoura, S.A., Eied, A.A.: Entropy of a general three-level atom interacting with a two mode. Laser Phys. 23, 025201 (2013b)

    Article  ADS  Google Scholar 

  • Obada, A.-S.F., Hanoura, S.A., Eied, A.A.: Entanglement in a system of a three-level atom interacting with a single-mode field in the presence of arbitrary forms of the nonlinearity and of the atomic initial state. Laser Phys. 24, 055201 (2014a)

    Article  ADS  Google Scholar 

  • Obada, A.-S.F., Hanoura, S.A., Eied, A.A.: Collapse-revival phenomenon for different configurations of a three-level atom interacting with a field via multi-photon process and nonlinearities. Eur. Phys. J. D 68, 18 (2014b)

    Article  ADS  Google Scholar 

  • Obada, A.-S.F., Hanoura, S.A., Eied, A.A.: Entanglement for a general formalism of a three-level atom in an E-configuration interacting nonlinearly with a non-correlated two-mode field. Optik 136, 602–618 (2017)

    Article  ADS  Google Scholar 

  • Ogden, C.D., Irish, E.K., Kim, M.S.: Dynamics in a coupled-cavity array. Phys. Rev. A 78, 063805 (2008)

    Article  ADS  Google Scholar 

  • Pellizzari, T.: Quantum networking with optical fibres. Phys. Rev. Lett. 79, 5242–5245 (1997)

    Article  ADS  Google Scholar 

  • Peøina, J., Haderka, O., Soubusta, J.: Local filtering operations on two qubits. Phys. Rev. A 64, 052305 (2001)

    ADS  Google Scholar 

  • Phoenix, S.J.D., Knight, P.L.: Establishment of an entangled atom-field state in the Jaynes–Cummings model. Phys. Rev. A 44, 6023–6029 (1991a)

    Article  ADS  Google Scholar 

  • Phoenix, S.J.D., Knight, P.L.: Comment on collapse and revival of the state vector in the Jaynes–Cummings model: an example of state preparation by a quantum apparatus. Phys. Rev. Lett. 66, 2833 (1991b)

    Article  ADS  Google Scholar 

  • Pryce, M.L.H., Ward, J.C.: Angular correlation effects with annihilation radiation. Nature 160, 435 (1947)

    Article  ADS  Google Scholar 

  • Puri, R.R., Bullough, R.K.: Quantum electrodynamics of an atom making two-photon transitions in an ideal cavity. J. Opt. Soc. Am. B 5, 2021–2028 (1988)

    Article  ADS  Google Scholar 

  • Qin, W., Zhang, Z.-M.: Entanglement of two two-level atoms trapped in coupled cavities with a Kerr medium. Chin. Phys. B 23, 034203 (2014)

    Article  ADS  Google Scholar 

  • Rauschenbeutel, A., Nogues, G., Osnaghi, S., Brune, P., Raimond, J.M., Haroche, S.: Coherent operation of a tunable quantum phase gate in cavity QED. Phys. Rev. Lett. 83, 5166–5169 (1999)

    Article  ADS  Google Scholar 

  • Recati, A., Calarco, T., Zanardi, P., Cirac, J.I., Zoller, P.: Local filtering operations on two qubits. Phys. Rev. A 66, 032309 (2002)

    Article  ADS  Google Scholar 

  • Rosenfeld, W., Berner, S., Volz, J., Weber, M., Weinfurter, H.: Remote preparation of an atomic quantum memory. Phys. Rev. Lett. 98, 050504 (2007)

    Article  ADS  Google Scholar 

  • Sainz, I., Björk, G.: Entanglement invariant for the double Jaynes–Cummings model. Phys. Rev. A 76, 042313 (2007)

    Article  ADS  Google Scholar 

  • Schmidt-Kaler, F., Häffner, H., Riebe, M., Gulde, S., Lancaster, G.P.T., Deuschle, T., Becher, C., Roos, C.F., Eschner, J., Blatt, R.: Realization of the Cirac–Zoller controlled-NOT quantum gate. Nature 422, 408 (2003)

    Article  ADS  Google Scholar 

  • Shen, L.-T., Yang, Z.-B., Wu, H.-Z., Chen, X.-Y., Zheng, S.-B.: Control of two-atom entanglement with two thermal fields in coupled cavities. J. Opt. Soc. Am. B 29, 2379–2385 (2012)

    Article  ADS  Google Scholar 

  • Sillanp, M.A., Park, J.I., Simmonds, R.W.: Coherent quantum state storage and transfer between two phase qubits via a resonant cavity. Nature 449, 438–442 (2007)

    Article  ADS  Google Scholar 

  • Solano, E., Agarwal, G.S., Walther, H.: Strong-driving-assisted multipartite entanglement in cavity QED. Phys. Rev. Lett. 90, 027903 (2003)

    Article  ADS  Google Scholar 

  • Son, W., Kim, M.S., Lee, J., Ahn, D.: Entanglement transfer from continuous variables to qubits. J. Mod. Opt. 49, 1739–1744 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Song, J., Xia, Y., Song, H.S.: One-step generation of cluster state by adiabatic passage in coupled cavities. Appl. Phys. Lett. 96, 071102 (2010)

    Article  ADS  Google Scholar 

  • Strauch, F.W., Williams, C.J.: Theoretical analysis of perfect quantum state transfer with superconducting qubits. Phys. Rev. B 78, 094516 (2008)

    Article  ADS  Google Scholar 

  • Sukumar, C.V., Buck, B.: Multi-phonon generalisation of the Jaynes–Cummings model. Phys. Lett. A 83, 211–213 (1981)

    Article  ADS  Google Scholar 

  • Tahira, R., Ikram, M., Bougouffa, S., Zubairy, M.S.: Entanglement dynamics of high-dimensional bipartite field states inside the cavities in dissipative environments. J. Phys. B: At. Mol. Opt. Phys. 43, 035502 (2010)

    Article  ADS  Google Scholar 

  • Tavis, M., Cummings, F.W.: Exact solution for an N-molecule-radiation-field Hamiltonian. Phys. Rev. 170, 379–384 (1968)

    Article  ADS  Google Scholar 

  • Trieu, D.H.: Dynamics in a system of four qubits in two cavities. J. Phys. Conf. Ser. 187, 012032 (2009)

    Article  Google Scholar 

  • Turchette, Q.A., Hood, C.J., Lange, W., Mabuchi, H., Kimble, H.J.: Measurement of conditional phase shifts for quantum logic. Phys. Rev. Lett. 75, 4710–4713 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Varcoe, B.T.H., Brattke, S., Englert, B.G., Walther, H.: The generation of Fock-states in the one-atom maser. Laser Phys. 10, 1–7 (2000a)

    MATH  Google Scholar 

  • Varcoe, B.T.H., Brattke, S., Weldinger, M., Walther, H.: Preparing pure photon number states of the radiation field. Nature 403, 743–746 (2000b)

    Article  ADS  Google Scholar 

  • von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1955)

    MATH  Google Scholar 

  • Werner, M.J., Risken, H.: Quasiprobability distributions for the cavity-damped Jaynes–Cummings model with an additional Kerr medium. Phys. Rev. A 44, 4623–4632 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  • Yang, C.P., Chu, S., Han, S.: Quantum information transfer and entanglement with SQUID qubits in cavity QED: a dark-state scheme with tolerance for nonuniform device parameter. Phys. Rev. Lett. 92(4p), 117902 (2004)

    Article  ADS  Google Scholar 

  • Yönaç, M., Eberly, J.H.: Qubit entanglement driven by remote optical fields. Opt. Lett. 33, 270–272 (2008)

    Article  ADS  Google Scholar 

  • Yönaç, M., Eberly, J.H.: Coherent-state control of noninteracting quantum entanglement. Phys. Rev. A 82, 022321 (2010)

    Article  ADS  Google Scholar 

  • Yönaç, M., Eberly, J.H.: Sudden death of entanglement of two Jaynes–Cummings atoms. J. Phys. B: At. Mol. Opt. Phys. 39, S621–S625 (2006)

    Article  Google Scholar 

  • Yoo, H.I., Eberly, J.H.: Dynamical theory of an atom with two or three levels interacting with quantized cavity fields. Phys. Rep. 118, 337–239 (1985)

    Article  Google Scholar 

  • You, J.Q., Tsai, J.S., Nori, F.: Scalable quantum computing with Josephson charge qubits. Phys. Rev. Lett. 89, 197902 (2002)

    Article  ADS  Google Scholar 

  • Yuan, Z.-S., Chen, Y.-A., Zhao, B., Chen, S., Schmiedmayer, J., Pan, J.-W.: Experimental demonstration of a BDCZ quantum repeater node. Nature 454, 1098–1101 (2008)

    Article  ADS  Google Scholar 

  • Zhang, K., Li, Z.-Y.: Transfer behavior of quantum states between atoms in photonic crystal coupled cavities. Phys. Rev. A 81, 033843 (2010)

    Article  ADS  Google Scholar 

  • Zheng, S.-B.: Quantum-information processing and multiatom-entanglement engineering with a thermal cavity. Phys. Rev. A. 66, 060303 (2002)

    Article  ADS  Google Scholar 

  • Zheng, S.-B.: Generation of entangled states for many multilevel atoms in a thermal cavity and ions in thermal motion. Phys. Rev. A. 68, 035801 (2003)

    Article  ADS  Google Scholar 

  • Zheng, S.B., Guo, G.C.: Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys. Rev. Lett. 85, 2392–2395 (2000)

    Article  ADS  Google Scholar 

  • Zou, H.-M., Fang, M.-F.: Analytical solution and entanglement swapping of a double Jaynes–Cummings model in non-Markovian environments. Quantum Inf. Process 14, 2673–2686 (2015)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

Taif University Researches Supporting Project number (TURSP-2020/017). Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Hanoura.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Optical and Quantum Sciences in Africa.

Guest edited by Salah Obayya, Alex Quandt, Andrew Forbes, Malik Maaza, Abdelmajid Belafhal and Mohamed Farhat.

The dynamics of the degree of entanglement (DEM) and the atomic population inversion functions and the excitations of the photonics and atomics modes, is analyzed. The time average effective Hamiltonians are formulated in the framework of the James’s theory. The effects of the system parameters are investigated in accordance with certain dispersive regimes. The rate of the energy transfer between the atomic subsystems is controlled by certain factor which is vary from one dispersive to another. The influences of both the external classical fields couplings and the averages of photons numbers on the DEM and the atomic population inversion functions are extensively addressed. The places of the occurrence of the collapses-revivals phenomenon in presence and absence of the external classical fields whether the averages of photons numbers are having low or large values, are stated.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanoura, S.A., Ahmed, M.M.A., Khalil, E.M. et al. Entanglement dynamics of a dispersive system of two driven qubits localized in coherently two linked optical cavities: two dispersive spatial distant driven Jaynes–Cummings cells. Opt Quant Electron 54, 11 (2022). https://doi.org/10.1007/s11082-021-02964-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-02964-2

Keywords

Navigation