Skip to main content
Log in

High resolution two-dimensional atomic microscopy via superposition of three probe coherences and three standing wave fields

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We theoretically investigate two-dimensional (2D) atomic microscopy by the superposition of three probe coherences and three standing-wave fields in a five-level atomic system. For the first time, we use such a unique configuration for the precise atomic microscopy. Under suitable conditions, the localization behavior is improved significantly having maximum probability. We reveal multiple localized peaks in a single wavelength domain through the absorption spectrum of the weak probe fields. We theoretically obtain the high-resolution and high-precision 2D atomic microscopy with 100% localization probability in a specific region of 2D space. The spatial resolution of the atom is enhanced in the proposed atomic system with significant probability and minimum uncertainty. The results might have vital role in laser cooling and trapping of neutral atoms and nano-lithography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abfalterer, R., et al.: Nanometer definition of atomic beams with masks of light. Phys. Rev. A 56, R4365–R4368 (1997)

    Article  ADS  Google Scholar 

  • Adams, C.S., Sigel, M., Mlynek, J.: Atom optics. Phys. Rep. 240, 143–210 (1994)

    Article  ADS  Google Scholar 

  • Agarwal, G.S., Kapale, K.T.: Subwavelength atom localization via coherent population trapping. J. Phys. B: At. Mol. Opt. Phys. 39, 3437–3446 (2006)

    Article  ADS  Google Scholar 

  • Agosta, C.C., Silvera, I.F., Stoof, H.T.C., Verhaar, B.J.: Trapping of neutral atoms with resonant microwave radiation. Phys. Rev. Lett. 62, 2361–2364 (1989)

    Article  ADS  Google Scholar 

  • Ali, S., Idrees, M., Bacha, B.A., Ullah, A., Haneef, M.: Efficient two-dimensional atom localization in a five-level conductive chiral atomic medium via birefringence beam absorption spectrum. Commun. Theor. Phys. 73, 015102 (10pp) (2021)

    Article  ADS  MathSciNet  Google Scholar 

  • Bacha, B.A., Khan, T., Khan, N., Ullah, S.A., Jabar, M.S.A., Ur Rahman, A.: The hybrid mode propagation of surface plasmon polaritons at the interface of graphene and a chiral medium. Eur. Phys. J. Plus 133, 509 (2018)

    Article  Google Scholar 

  • Balykin, V.I., Letokhov, V.S., Ovchinnikov, Y.B., Sidorov, A.I., Shula, S.V.: Channeling of atoms in a standingspherical light wave. Opt. Lett. 13, 958–60 (1988)

    Article  ADS  Google Scholar 

  • Birkl, G., Buchkremer, F.B.J., Dumke, R., Ertmer, W.: Atom optics with microfabricated optical elements. Opt. Commun. 191, 67–81 (2001)

    Article  ADS  Google Scholar 

  • Bozorgzadeh, F., Ghorbani Fard, M.R., Sahrai, M.: Controllable two-and three-dimensional atom localization via spontaneously generated coherence. Eur. Phys. J. Plus 135, 904 (2020)

    Article  Google Scholar 

  • Brune, M., et al.: Quantum nondemolition measurement of small photon numbers by Rydberg-atom phase-sensitive detection. Phys. Rev. Lett. 65, 976–979 (1990)

    Article  ADS  Google Scholar 

  • Collins, G.P.: Experimenters produce new Bose-Einstein condensate (s) and possible puzzles for theorists. Phys. Today 49, 18–21 (1996)

    Google Scholar 

  • Ding, C., Li, J., Yang, X., Zhang, D., Xiong, H.: Two-dimensional atom localization via spontaneous emission in a coherently driven five level M-type atomic system. Phys. Rev. A 84, 063834–063839 (2011a)

    Article  ADS  Google Scholar 

  • Ding, C.L., Li, J., Zhan, Z., Yang, X.: Proposal for efficient two-dimensional atom localization using probe absorption in a microwave-driven four-level atomic system. Phys. Rev. A 83, 043840–043849 (2011b)

    Article  ADS  Google Scholar 

  • Freyberger, M., Kienle, S.H., Yakovlev, V.P.: Yakovlev, Interferometric measurement of an atomic wave function. Phys. Rev. A 56, 195–201 (1997)

    Article  ADS  Google Scholar 

  • Harold, J.: Metcalf and Peter van der Straten, Laser Cooling and Trapping. Springer-Verlag, Berlin (1999)

    Google Scholar 

  • Holder, B.P., Reichl, L.E.: Stimulated-Raman-adiabatic-passage-like transitions in a harmonically modulated optical lattice. Phys. Rev. A 76, 013420 (2007)

    Article  ADS  Google Scholar 

  • Horng, T.L., Hsueh, C.H., Gou, S.C.: Transition to quantum turbulence in a Bose-Einstein condensate through the bending-wave instability of a single-vortex ring. Phys. Rev. A 77, 063625 (2008)

    Article  ADS  Google Scholar 

  • Idrees, M., Bacha, B.A., Javed, M., Ullah, S.A.: Precise position measurement of an atom using superposition of two standing wave fields. Laser Phys. 27, 045202 (2017)

    Article  ADS  Google Scholar 

  • Idrees, M., Kalsoom, H., Bacha, B.A., Ullah, A., Wang, L.-G.: Spatial-dependent probe transmission based high-precision two-dimensional atomic localization. Commun. Theor. Phys. 73, 045102 (2021)

    Article  ADS  Google Scholar 

  • Idrees, M., Ullah, M., Bacha, B.A., Ullah, A., Wang, L.-G.: High-resolution two-dimensional atomic microscopy in a tripod-type four-level atomic medium via standing wave fields. Laser Phys. 30, 115402 (2020)

  • Idrees, M., Ullah, M., Bacha, B.A., Ullah, A., Wang, L.-G.: High-resolution two-dimensional atomic localization via tunable surface plasmon polaritons. Plasmonics (2021). https://doi.org/10.1007/s11468-021-01404-x

  • Iqbal, H., Idrees, M., Javed, M., Bacha, B.A., Khan, S., Ullah, S.A.: Goos-Hanchen shift from cold and hot atomic media using Kerr nonlinearity. J. Russ. Laser Res. 38, 426–436 (2017)

    Article  Google Scholar 

  • Ivanov, V., Rozhdestvensky, Y.: Two-dimensional atom localization in a four-level tripod system in laser fields. Phys. Rev. A 81, 033809 (2010)

  • Jia, N., Qian, J., Kirova, T., Nas, G.J.U., Hamedi, H.R.: Ultraprecise Rydberg atomic localization using optical vortices. Opt. Express 28, 36936–36952 (2020)

    Article  ADS  Google Scholar 

  • Johnson, K.S., et al.: Using neutral metastable argon atoms and contamination lithography to form nanostructures in silicon silicondioxide and gold. Appl. Phys. Lett. 69, 2773–2775 (1996)

    Article  ADS  Google Scholar 

  • Johnson, K.S., et al.: Localization of metastable atom beams with optical standing waves:nanolithography at the Heisenberg limit. Science 280, 1583–1586 (1998)

    Article  ADS  Google Scholar 

  • Khan, M.I., Idrees, M., Bacha, B.A., Khan, H., Ullah, S.A., Haneef, M.: Optical soliton through induced cesium doppler broadening medium. Phys. Scr. 95, 085102 (2020)

    Article  ADS  Google Scholar 

  • Khan, M., Idrees, M., Bacha, B.A., Ullah, S.A., Haneef, M.: Tunnelling based birefringent rotary photon dragging through induced chiral medium. Phys. Scr. 96, 055101 (2021)

  • Korsunsky, E.A., Leinfellner, N., Huss, A., Baluschev, S., Windholz, L.: Phase dependent-electromagnetically inducedtransparency. Phys. Rev. A 59, 2302–2305 (1999)

  • Kunze, S., Rempe, G., Wilkens, M.: Atomic-position measurement via internal-state encoding. Europhys. Lett. 27, 115–121 (1994)

    Article  ADS  Google Scholar 

  • Li, Y., Xiao, M.: Electromagnetically induced transparency in a three level system in rubidium atoms. Phys. Rev. A 51, R2703–R2706 (1995)

    Article  ADS  Google Scholar 

  • Li, J., Yu, R., Liu, M., Ding, C., Yang, X.: Efficient two dimensional atom localization via phase-sensitive absorption spectrum in a radio-frequency-driven four-level atomic system. Phys. Lett. A 375, 3978–85 (2011)

    Article  ADS  Google Scholar 

  • Marte, M.A.M., Zoller, P.: Quantum nondemolition measurement of transverse atomic position in Kapitza-Dirac atomic beam scaterring. Appl. Phys. B 54, 477–485 (1992)

    Article  ADS  Google Scholar 

  • Meystre, P., Sargent, M.: Elements of Quantum Optics. Springer-Verlag, Berlin (1999)

    Book  MATH  Google Scholar 

  • Miles, J.A., Simmons, Z.J., Yavuz, D.D.: Subwavelength localization of atomic excitation using electromagnetically induced transparency. Phys. Rev. X 3, 31014 (2013)

  • Mompart, J., Ahufinger, V., Birkl, G.: Coherent patterning of matter waves with subwavelength localization. Phys. Rev. A 79, 053638 (2009)

  • Qamar, S., Zhu, S.Y., Zubairy, M.S.: Precision localization of single atom using Autler-Townes microscopy. Opt. Commun. 176, 409–416 (2000)

    Article  ADS  Google Scholar 

  • Raab, E.L., Prentiss, M., Cable, A., Chu, S., Pritchard, D.E.: Trapping of neutral sodium atoms with radiation pressure. Phys. Rev. Lett. 59, 2631–2633 (1987)

    Article  ADS  Google Scholar 

  • Rahmatullah, Qamar, S.: Two-dimensional atom localization via Raman-driven coherence. Phys. Lett. A 378, 684–690 (2014)

    Article  ADS  MATH  Google Scholar 

  • Raithel, G., Birkl, G., Kastberg, A., Phillips, W.D., Rolston, S.L.: Cooling and localization dynamics in optical lattices. Phys. Rev. Lett. 78, 630–633 (1997)

    Article  ADS  Google Scholar 

  • Scully, M.O., Zubairy, M.S.: Quantum optics. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  • Shah, S.A., Ullah, S., Idrees, M., Bacha, B.A., Ullah, S.A.: Surface plasmon induced atom localization in a tripod-type four level atomic system. Phys. Scr. 94, 035401 (2019)

    Article  ADS  Google Scholar 

  • Singh, N., Wasan, A.: High-precision two-and three-dimensional atom localization via spatial dependent probe absorption in a closed-loop M-type atomic system. J. Opt. Soc. Am. B. 35, 1318–1327 (2018)

    Article  ADS  Google Scholar 

  • Solak, H.H.: Nanolithography with coherent extreme ultraviolet light. J. Phys. D 39, R171–R188 (2006)

    Article  ADS  Google Scholar 

  • Storey, P., Collett, M., Walls, D.: Atomic-position resolution by quadrature-field measurement. Phys. Rev. A 47, 405–418 (1993)

    Article  ADS  Google Scholar 

  • Taieb, R., Dum, R., Cirac, J.I., Marte, P., Zoller, P.: Cooling and localization of atoms in laser-induced potenttial wells. Phys. Rev. A 49, 4876–4887(1993)

    Article  ADS  Google Scholar 

  • Thomas, J.E.: Quantum theory of atomic position measurement using optical fields. Phys. Rev. A 42, 5652–5666 (1990)

    Article  ADS  Google Scholar 

  • Thomas, J.E., Wang, L.J.: Precision position measurement of moving atoms. Phys. Rep. 262, 311–366 (1995)

    Article  ADS  Google Scholar 

  • Vitanov, N.V., Rangelov, A.A., Shore, B.W.: Stimulated Raman adiabatic passage in physics, chemistry, and beyond. Rev. Mod. Phys. 89, 015006 (2017)

    Article  ADS  Google Scholar 

  • Wan, R.G., Kou, J., Jiang, L., Jiang, Y., Gao, J.Y.: Two dimensional atom localization via quntum interference in a coherently driven inverted-Y system. Opt. Commun. 284, 985–90 (2011)

    Article  ADS  Google Scholar 

  • Wan, R.G., Zhang, T.Y., Kou, J.: Two-dimensional sub-half-wavelength atom localization via phase control of absorption and gain. Phys. Rev. A 87, 043816 (2013)

  • Wang, Z., Yu, B., Zhu, J., Cao, Z., Zhen, S., Wu, X., Xu, F.: Atom localization via controlled spontaneous emission in a five-level atomic system. Ann. Phys. 327, 1132–1145 (2012)

    Article  ADS  MATH  Google Scholar 

  • Wu, J., Wu, B., Mao, J.: Efficient atom localization via probe absorption in an inverted-Y atomic system. J. Mod. Opt. 65, 1219–1225 (2018)

    Article  ADS  Google Scholar 

  • Xu, X., et al.: Coherent population trapping of an electron spin in a single negatively charged quantum dot. Nat. Phys. 4, 692–695 (2008)

    Article  Google Scholar 

  • Yavuz, D.D., Proite, N.A.: Nanoscale resolution fluorescense microscopy using electromagnetically induced transparency. Phys. Rev. A 76, 041802 (2007)

  • Zhang, D., Yu, R., Li, J., Hao, X., Yang, X.: Efficient two-dimensional atom localization via phase-sensitive absorption and gain spectra in a cycle-configuration four-level atomic system. Opt. Commun. 321, 138–144 (2014)

    Article  ADS  Google Scholar 

  • Zimmermann, B., et al.: Localization and loss of coherence in moleculer double-slit experiments. Nat. Phys. 4, 649–655 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Idrees or Bakth Amin Bacha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ullah, N., Idrees, M., Ullah, M. et al. High resolution two-dimensional atomic microscopy via superposition of three probe coherences and three standing wave fields. Opt Quant Electron 53, 312 (2021). https://doi.org/10.1007/s11082-021-02954-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-02954-4

Keywords

Navigation