Energy efficient hybrid WDM-TDM passive optical networks with access-load difference between ONUs using FBGs, SOA and DWS

Abstract

The rapid increase in internet services demands high capacity and brings high energy dissipation. For broadband access networks, energy efficient passive optical networks (PONs) are ubiquitously demonstrated to conserve energy. However, high cost components for monitoring, complexity, delays and synchronization issues in active/passive optical network unit (ONU) status are the utmost issues to be addressed. Energy efficient symmetrical Wavelength division multiplexed (WDM) and Time division multiplexed (TDM) hybrid passive optical network using Access-Load Difference between ONUs (ALD) approaches with dynamic wavelength switches has been proposed. Dual capacity providing system is presented where 2 Gbps and 12 Gbps sources are operated according to traffic at ONUs. Total capacity of individual low data rate transmitter are 8 Gbps (2 Gbps × 4) and 48 Gbps (12 Gbps × 4) for each ODN serving 64 ONU. Proposed approach is competent to only use specific transmitter module based on load at ONU and keep rest of the transmitters inactive. Design of ALD DWS is such that there is no service interruption even when any transmitter stops working. Moreover, nonlinear carrier generation eliminate the requirements of lasers for upstream transmission which saves cost as well as energy. It is observed that proposed system save 400% energy below 10 Gbps, 300% between 10–20 Gbps, 200% between 20–30 Gbps, 100% between 30–40 Gbps and 0% for beyond 50 Gbps. Therefore variable transmitters (Bandwidth) are operational in this architecture and provide economical in initial operational expenditure (OPEX).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Ahmed, F., Naeem, M., Iqbal, M.: ICT and renewable energy: a way forward to the next generation telecom base stations. Telecommun. Syst. 64, 43–56 (2017)

    Article  Google Scholar 

  2. Banerjee, A., et al.: Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: A review. J. Opt. Netw. 4(11), 737–758 (2005)

    Article  Google Scholar 

  3. Butt, R.A., Idrus, S.M., Qureshi, K.N., Zul, N.: An energy efficient cyclic sleep control framework for ITU PONs. Opt. Switch. Network. 27, 7–17 (2018)

    Article  Google Scholar 

  4. Chauhan, A., Vaish, A., Verma, A.: Compensation of SPM and Dispersion in Long Reach COOFDM System with Multiple Symmetrical Dispersion Compensation and Midlink Spectrum Inversion Modules. International Journal of Microwave And Optical Technology 13(1), 98–105 (2018)

    Google Scholar 

  5. Cheng, N.: Flexible TWDM PON with WDM overlay for converged services. Opt. Fiber Technol. 26, 21–30 (2015)

    ADS  Article  Google Scholar 

  6. Chow, H.: “Demonstration of Low Power Bit-Interleaving TDM-PON”, 38th European Conference and Exhibition on Optical Communications. IEEE, Amsterdam, Netherlands (2014)

    Google Scholar 

  7. Dixit, A., et al.: Flexible TDMA/WDMA passive optical network: energy efficient next-generation optical access solution. Opt. Switch. Networking 10(4), 491–506 (2013)

    Article  Google Scholar 

  8. Dourado, D., Ferreira, R., Rocha, M., Duarte, U.: Strategies to increase spectral efficiency and energy saving with quality metric assurance in TWDM-PON. Opt. Switch. Netw. 36, 2019 (2019). https://doi.org/10.1016/j.osn.2019.100550

    Article  Google Scholar 

  9. Dutta, S., Das, G.: Design of energy-efficient EPON: a novel protocol proposal and its performance analysis. IEEE Trans. Green Commun. Netw. 3, 840–852 (2019)

    Article  Google Scholar 

  10. En, T., et al.: (2015) An energy minimization algorithm based on distributed dynamic clustering for long term evolution (LTE) heterogeneous networks. Sci. China Inf. Sci. 58(4), 1–12 (2015)

    ADS  Google Scholar 

  11. Garfias, P., Andrade, M.D., Tornatore, M., Buttaboni, A., Sallent, S., Gutiérrez, L.: Energy-saving mechanism in WDM/TDM-PON based on upstream network traffic. Photonics 1, 235–250 (2014)

    Article  Google Scholar 

  12. Garg, A.K., Jayani, V., Singh, G., Ismail, T., Selmy, H.: Dedicated and broadcasting downstream transmission with energy-efficient and latency-aware ONU interconnection in WDM-PON for smart cities. Opt. Fiber Technol. 52, 101949 (2019). https://doi.org/10.1016/j.yofte.2019.101949

    Article  Google Scholar 

  13. Gielen, D., et al.: The role of renewable energy in the global energy transformation. Energ. Strat. Rev. 24, 38–50 (2019)

    Article  Google Scholar 

  14. Glen, K., Biswanath, M., Gerry, P.: IPACT: a dynamic protocol for an Ethernet PON (EPON). IEEE Commun. Mag. 40, 74–80 (2002)

    Google Scholar 

  15. Gong, X., Guo, L., Zhang, Q.: Joint resource allocation and software-based reconfiguration for energy-efficient OFDMA-PONs. J. Optic. Commun. Networking 10(8), C75–C85 (2018)

    Article  Google Scholar 

  16. Hamadouche, H., Merabet, B., Bouregaa, M.: The performance comparison of hybrid WDM/TDM, TDM and WDM PONs with 128 ONUs. J. Opt. Commun. ISSN 2191–6322, 2020 (2020)

    Google Scholar 

  17. Han, M.S., Yoo, H., Yoon, B.Y., Kim, B., Koh, J.S.: Efficient dynamic bandwidth allocation for FSAN-compliant GPON. J. Opt. Networking 7(8), 783 (2008)

    ADS  Article  Google Scholar 

  18. Han, M.S., Yoo, H., Lee, D.S.: Development of efficient dynamic bandwidth allocation algorithm for XGPON. ETRI J 35, 18–26 (2013)

    Article  Google Scholar 

  19. Hirafuji, R.O.C., Dhaini, A.R., Khotimsky, D.A., Campelo, D.R.: Energy Efficiency Analysis of the Watchful Sleep Modein Next-Generation Passive Optical Networks, IEEE Symposium on Computers and Communication (ISCC). IEEE, Messina, Italy (2016)

    Google Scholar 

  20. Horvath, T., Munster, P., Oujezsky, V., Bao, N.: Passive optical networks progress: a tutorial. Electronics 9(1081), 1–31 (2020)

    Google Scholar 

  21. Hossienabadi, M.T., Ansari, N.: Multi-power-level energy saving management for passive optical networks. IEEE/OSA J. Opt. Commun. Netw. 6, 965–973 (2014)

    Article  Google Scholar 

  22. Hu, X., Zhang, L., Cao, P., Wang, K., Su, Y.: Energy-efficient WDM-OFDM-PON employing shared OFDM modulation modules in optical line terminal. Opt. Express 20(7), 8071–8077 (2012)

    ADS  Article  Google Scholar 

  23. Hu, X., et al.: Energy-efficient optical network units for OFDM PON based on time-domain interleaved OFDM technique. Opt. Express 22(11), 13043–13049 (2014)

    ADS  Article  Google Scholar 

  24. Hwang, I.-S., Nikoukar, A., Su, Y.-M., Liem, T.A.: Decentralized SIEPOn-Based ONU-Initiated Tx/TRxEnergy-Efficiency Mechanism in EPON. IEEE/OSA J. Opt. Commun. Netw. 8, 238–248 (2016)

    Article  Google Scholar 

  25. Jie, L., et al.: A comparison of sleep mode mechanisms for PTP and TDM-PONs. In: Proceedings of ICC, pp. 543–547 (2013)

  26. Kaur, S., Kumar, M., Verma, A.: An integrated high-speed full duplex coherent OFDM-PON and visible-light communication system. J. Opt. Commun. 1(1), 2019 (2019). https://doi.org/10.1515/joc-2018-0236

    Article  Google Scholar 

  27. Khalili, H., Rincón, D., Sallent, S., Piney, J.: An energy-efficient distributed dynamic bandwidth allocation algorithm for passive optical access networks. Sustainability 12(6), 1–20 (2020)

    Article  Google Scholar 

  28. Khotimsky, D.A., Zhang, D., Yuan, L., Hirafuji, R.O.C., Campelo, D.R.: Unifying sleep and doze modes for energy-efficient PON systems. IEEE Commun. Lett. 18, 688–691 (2014)

    Article  Google Scholar 

  29. Khou, Y., Gu, R., Ji, Y.: An energy-efficient mechanism of passive optical access network based on Ethernet. In: Proceedings of the 12th International Conference on Optical Communications and Networks (ICOCN), Chengdu, China, pp. 1–4, 2013.

  30. Kim, T., Kim, H., Sun, Y., Jin, Z.: Physical layer and medium access control design in energy efficient sensor networks: an overview. IEEE Trans. Ind. Inform. 11, 2–15 (2015)

    Article  Google Scholar 

  31. Kubo, R., Kani, J., Fujimoto, Y., Yoshimoto, N., Kumozaki, K.: Adaptive power saving mechanism for 10 Gigabit class PON systems. IEICE Trans. Commun. 93(2), 280–288 (2010)

    Article  Google Scholar 

  32. Kumar, A., Randhawa, R.: An improved hybrid WDM/TDM PON model with enhanced performance using different modulation formats of WDM transmitter. J. Opt. Commun. 1, 1 (2018). https://doi.org/10.1515/joc-2018-0154

    Article  Google Scholar 

  33. Lange, A.G.: Energy consumption of telecommunication networks - a network operator’s view. In: OFC/NFOEC’09, Workshop on Energy Footprint of ICT: Forecast and Network Solutions, SanDiego, CA, March 2009.

  34. Langendoen, K., Halkes, G. (2005) Energy-efficient medium access control. In: Embedded systems handbook, pp. 34.1–34.29. CRC Press, Boca Raton, FL.

  35. Li, J., et al.: Physical-layer energy-efficient receiving method based on selective sampling in orthogonal frequency division multiplexing access passive optical network. Opt. Eng. 53(5), 056106 (2014)

    ADS  Article  Google Scholar 

  36. Liu, C., et al.: Performance investigation of PM-based wavelength remodulation scheme in bidirectional TWDM-PON. J. Opt. Commun. 1, 1 (2021). https://doi.org/10.1515/joc-2020-0198

    Article  Google Scholar 

  37. Pubuduni, M., Dias, I., Wong, E.: Sleep/doze controlled dynamic bandwidth allocation algorithms for energy-efficient passive optical networks. Opt. Express 21(8), 9931–9946 (2013)

    ADS  Article  Google Scholar 

  38. Qin, Y., Zhang, J.: Physical Layer Energy-efficient Scheme Exploiting Clock-gating off Mode in ONUs for OFDM-PON. Asia Commun. Photon. Conf. 1, 1 (2016). https://doi.org/10.1364/ACPC.2017.Su3C.8

    Article  Google Scholar 

  39. Qi-yu, Z., Bin, L., Run-ze, W.: A Dynamic Bandwidth Allocation Scheme for GPON Based on Traffic Prediction. In: 9th International Conference on Fuzzy System Knowledge Discovery, no. Fskd, pp. 2043–2046, 2012.

  40. Rabhi, S., Barrak, R., Menif, M., Moussati, A.: Performance evaluation of radio over fiber system model in multipath fading channel at 60 GHz. Int. J. Microw. Opt. Tech. 9(6), 460–467 (2014)

    Google Scholar 

  41. Ullah, R., Liu, B., Mao, Y., Feng, T., Ali, A., Ahmad, I., et al.: Application of optical frequency comb generation with controlled delay circuit for managing the high capacity network system. AEU-Int. J. Electron. Commun. 94, 322–331 (2018). https://doi.org/10.1016/j.aeue.2018.07.025

    Article  Google Scholar 

  42. Van, D.P., et al.: Energy-saving framework for passive optical networks with ONU sleep/doze mode. Opt. Express 23(3), A1–A14 (2015)

    ADS  Article  Google Scholar 

  43. Wong, E., Mueller, M., Amann, M.C.: Characterization of energyefficient and colorless ONUs for future TWDM-PONs. Opt. Express 21(18), 20747–20761 (2013)

    ADS  Article  Google Scholar 

  44. Yan, Y., Dittmann, L.: Energy Efficiency in Ethernet Passive Optical Networks (EPONs): Protocol Design and Performance Evaluation. J. Commun. 6(3), 249–261 (2011)

    Article  Google Scholar 

  45. Zhang, X., Sun, X.: Optical pulse width modulation based TDM-PON monitoring with asymmetric loop in ONUs. Sci Rep. 8(1), 1 (2018). https://doi.org/10.1038/s41598-018-22195-y

    ADS  Article  Google Scholar 

  46. Zhang, Y., et al.: Energy efficiency in telecom optical networks. IEEE Commun. Surv. Tutorials 12(4), 441–458 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the management and technical team of Punjab Technical University, Jalandhar for providing the state of the art laboratory facility to carry out the research work.

Funding

This is to declare that no funding has been provided by any internal/external agency for this research work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shippu Sachdeva.

Ethics declarations

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sachdeva, S., Malhotra, J. & Kumar, M. Energy efficient hybrid WDM-TDM passive optical networks with access-load difference between ONUs using FBGs, SOA and DWS. Opt Quant Electron 53, 309 (2021). https://doi.org/10.1007/s11082-021-02944-6

Download citation

Keywords

  • WDM-TDM-PON
  • Dynamic wavelength selection (DWS)
  • Access load difference (ALD)
  • ICT
  • SOA