Skip to main content
Log in

Effects of ellipticity angle on soliton solutions and modulation instability spectra in two-core birefringent optical fibers

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, we investigate a coupled nonlinear Schrodinger equation which describes the propagation the propagation of optical signal in a two core optical fiber. A rich variety of various types of solitary wave solutions are exhibited including dark, bright, dark-bright, kink, anti-kink, singular, combined singular, triangular periodic solutions, Jacobi elliptic function solutions, combined Jacobi elliptic function solutions and periodic singular wave soliton solutions are obtained through the auxiliary equation method. We also investigate the modulation instability (MI) in the considered system. The study of the MI gain spectrum is done in the normal and anomalous dispersive regimes. To show the real physical significance of the studied equations, some three dimensional (3D) and two dimensional (2D) figures of obtained solutions are plotted with the use of the Matlab software under the proper choice of arbitrary parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Abdelilah, K.H.S., Nuruddeen, R.I., Gomez-Aguilar, J.F.: Generalized optical soliton solutions to the (3+1) dimensional resonant nonlinear Schrödinger equation with Kerr and parabolic law nonlinearities. Opt. Quantum Electron. 51(173), 1–15 (2019)

    Google Scholar 

  • Alofi, A.S.: Extended Jacobi elliptic function expansion method for nonlinear Benjamin-Bona-Mahony equations. Inter. Math. Forum 7(53), 2639–2649 (2012)

    MathSciNet  MATH  Google Scholar 

  • Anderson, D., Lisak, M.: Modulational instability of coherent optical-fiber transmission signals. Opt. Lett. 9, 468–470 (1984)

    Article  ADS  Google Scholar 

  • Arnous, A.H., Ullah, M.Z., Asma, M., Moshokoa, S.P., Zhou, Q., Mirzazadeh, M., Biswas, A., Belic, M.: Dark and singular dispersive optical solitons of Schrödinger-Hirota equation by modified simple equation method. Optik 136, 445–450 (2017)

    Article  ADS  Google Scholar 

  • Arshed, S., Arif, A.: Soliton solutions of higher-order nonlinear Schrödinger equation (NLSE) and nonlinear Kudryashov’s equation. Optik 209, 164588 (2020)

  • Astrakharchik, G.E., Malomed, B.A.: Dynamics of one-dimensional quantum droplets. Phys. Rev. A 98(1), 013631 (2018)

  • Barlow, D.N., Hansen, A.J.: Development of low and high-birefringence optical fibers. IEEE Trans. Microwave Theory Tech. 30 (4) ISSN 0018–9480, 323–334 (1982)

  • Dai, C.Q., Zhang, J.F.: Jacobian elliptic function method for nonlinear differential difference equations. Chaos Solitons Fractals 27, 1042–1049 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  • Datsch, H., Bahlmann, N., Zhuromskyy, O., Hammer, M., Wilkens, L., Gerhardt, R., Hertel, P., Popkov, A.F.: Applications of magneto-optical waveguides in integrated optics review. J. Opt. Soc. Am. B 22, 240–253 (2005)

    Article  ADS  Google Scholar 

  • Djidna, D., Gambo, B., Aboukar, A., Mohamadoua, A.: Cross-phase modulation instability in an elliptical birefringent positive-negative index coupler with self-steepening and intrapulse Raman Scattering effects. Optik 185, 726–739 (2019)

    Article  ADS  Google Scholar 

  • Drexler, P., Fiala, P.: Suppression of polarimetric birefringence effect in optical fiber and its application for pulsed current sensing. Proceedings of 2009 Waveform Diversity and Design Conference, ISBN 978-1-4244-2971-4, USA:Orlando (2009)

  • Drummond, P.D., Kennedy, T.A.B., Dudley, J.M., Leonhardt, R., Harvey, J.D.: Cross-phase modulationalinstability in high birefringence fibers. Opt. Commun. 78, 137–142 (1990)

    Article  ADS  Google Scholar 

  • El-Borai, M.M., El-Owaidy, H.M., Ahmed, H.M., Arnous, A.H., Moshokoa, S., Biswas, A., Belic, M.: Dark and singular optical solitons with spatio-temporal dispersion using modified simple equation method. Optik 130, 324–331 (2017)

    Article  ADS  Google Scholar 

  • Fan, E., Zhang, J.: Applications of the Jacobi elliptic function method to special-type nonlinear equations. Phys. Lett. A 305, 383–392 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  • Ghanbari, B., Gomez-Aguilar, J.F.: Optical soliton solutions for the nonlinear Radhakrishnan-Kundu-Lakshmanan equation. Mod. Phys. Lett. B 1950402, 1–15 (2019)

    MathSciNet  Google Scholar 

  • Haider, T.: A review of magneto-optic effects and its application. Int. J. Electromagn. Appl. 7, 17–24 (2017)

    Google Scholar 

  • Hasegawa, A., Brinkman, W.F.: Tunable coherent IR and FIR sources utilizing modulational instability. IEEE J. Quantum Electron. 16, 694–697 (1980)

    Article  ADS  Google Scholar 

  • Hasegawa, A., Kodama, Y.: Signal transmission by optical solitons in monomode fiber. Proc. IEEE 69, 1145–1150 (1982)

    Article  ADS  Google Scholar 

  • Hasegawa, K., Miyazaki, Y.: Magneto-optic devices using interaction between magnetostatic surface wave and optical guided wave. Jpn. J. Appl. Phys. 31, 230 (1992)

    Article  Google Scholar 

  • Hasegawa, A., Tappert, F.: Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. Appl. Phys. Lett. 23, 142–144 (1973)

    Article  ADS  Google Scholar 

  • Hosseini, K., Aligoli, M., Mirzazadeh, M., Eslami, M., Gomez-Aguilar, J.F.: Dynamics of rational solutions in a new generalized Kadomtsev-Petviashvili equation. Mod. Phys. Lett. B 1950437, 1–11 (2019)

    MathSciNet  Google Scholar 

  • Jawad, A.J.M., Mirzazadeh, M., Zhou, Q., Biswas, A.: Optical solitons with anticubic nonlinearity using three integration schemes. Superlattices Microstruct 105, 1–10 (2017)

    Article  ADS  Google Scholar 

  • Kudryashov, N.A., Antonova, E.V.: Solitary waves of equation for propagation pulse with power nonlinearities. Optik 217, 164881 (2020)

  • Liu, S., Fu, Z., Liu, S.Z.: Jacobi Elliptic function expansion method and periodic wave solutions of nonlinear wave equations. Phys. Lett. A 289, 69–74 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  • Li, J.H., Chiang, K.S., Chow, K.W.: Modulation instabilities in two-core optical fibers. J. Opt. Soc. Am. B 28, 1693–1701 (2011)

    Article  ADS  Google Scholar 

  • Menyuk, C.R.: Nonlinear pulse propagation in birefringent optical fibers. IEE J. Quantum Electron. 23, 174–176 (1987)

    Article  ADS  Google Scholar 

  • Menyuk, C.R.: Pulse Propagation in an Elliptically Birefringent Kerr Medium. IEE J. Quantum Electron. 25(12), 2674–2682 (1989)

    Article  ADS  Google Scholar 

  • Mirzazadeh, M., Ekici, M., Sonomezoglu, A., Eslami, M., Zhou, Q., Kara, A.H., Milovic, D., Majid, F.B., Biswas, A., Belic, M.: Optical solitons with complex Ginzburg-Landau equation. Nonlinear Dyn. 85, 1979–2016 (2016)

    Article  MathSciNet  Google Scholar 

  • Mirzazadeh, M., Ekici, M., Zhou, Q., Biswas, A.: Exact solitons to generalized resonant dispersive nonlinear Schrödinger equation with power law nonlinearity. Optik 130, 178–183 (2017)

    Article  ADS  Google Scholar 

  • Murdoch, S.G., Leonhardt, R., Harvey, J.D.: Polarization modulation instability in weakly birefringent fibers. Opt. Lett. 20, 866–868 (1995)

    Article  ADS  Google Scholar 

  • Osman, M.S., Ali, K.K., Gomez-Aguilar, J.F.: A variety of new optical soliton solutions related to the nonlinear Schrödinger equation with time-dependent coefficients. Optik 222(165389), 1–29 (2020)

    Google Scholar 

  • Payne, R.I.: Electric current sensors employing spun highly birefringent optical fibers. J. Lightwave Technol. 7(12) ISSN 0733–8724, 2084–2094 (1989)

  • Qiu, Y., Malomed, B.A., Mihalache, D., Zhu, X., Peng, J., He, Y.: Generation of stable multi-vortex clusters in a dissipative medium with anti-cubic nonlinearity. Phys. Lett. A 383(22), 2579–2583 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  • Rashleigh, R., Eickhoff, S.C.: Bending-induced birefringence in single mode fibers. Opt. Let. 5(5), 273–275 (1980)

    ADS  Google Scholar 

  • Rothenberg, J.E.: Modulational instability for normal dispersion. Phys. Rev. A 42, 682–685 (1990)

    Article  ADS  Google Scholar 

  • Shoji, Y., Mizumoto, T.: Waveguide magneto-optical devices for photonics integrated circuits. Opt. Mater. Express 8, 2387–2394 (2018)

    Article  ADS  Google Scholar 

  • Shukla, P.K., Rasmussen, J.J.: Modulational instability of short pulses in long optical fibers. Opt. Lett. 11, 171–173 (1986)

    Article  ADS  Google Scholar 

  • Snyder, W.: Coupled-mode theory for optical fibers. J. Opt. Soc. Am. 62, 1267–1277 (1972)

    Article  ADS  Google Scholar 

  • Stone, J.: Stress-optic effects, birefringence, and reduction of birefringence by annealing in fiber Fabry-Perot interferometers. J. Lightwave Technol. 6(7), 1245–1248 (1988)

    Article  ADS  Google Scholar 

  • Tai, K., Hasegawa, A., Tomita, A.: Observation of modulational instability in optical fibers. Phys. Rev. Lett. 56, 135–138 (1986)

    Article  ADS  Google Scholar 

  • Tanemura, T., Ozeki, Y., Kikuchi, K.: Modulational instability and parametric amplification induced by loss dispersion in optical fibers. Phys. Rev. Lett. 93, 163902 (2004)

  • Wazwaz, A.M.: The extended tanh method for abundant solitary wave solutions of nonlinear wave equations. Appl. Math. Comput. 187, 1131–1142 (2007)

    MathSciNet  MATH  Google Scholar 

  • Wazwaz, A.M.: A variety of optical solitons for nonlinear Schrödinger equation with detuning term by the variational iteration method. Optik 196, 163169 (2019)

  • Zahran, E.H.M., Khater, M.M.A.: Exact traveling wave solutions for the system of shallow water wave equations and modified Liouville equation using extended Jacobian elliptic function expansion method. Am. J. Comput. Math. 4, 455–463 (2014)

    Article  Google Scholar 

  • Zayed, E.M.E., Shohib, R.M.A., El-Horbaty, M.M., Biswas, A., Asma, M., Ekici, M., Alzahrani, A.K., Belic, M.R.: Solitons in magneto-optic waveguides with quadratic-cubic nonlinearity. Phys. Lett. A 384(25), 126456 (2020)

  • Zhang, L.-H.: Travelling wave solutions for the generalized Zakharov-Kuznetsov equation with higher-order nonlinear terms. Appl. Math. Comput. 208, 144–155 (2009)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Inc.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

\(k_{11}=-{ K}+\alpha \,{ K}+1/2\,\beta _{{2}}{\Omega }^{2}+\sqrt{{ \frac{P}{1+{f}^{2}}}}f\delta \,{ K}+\gamma \,\sqrt{{\frac{P}{1 +{f}^{2}}}}f+\nu \,\sqrt{{\frac{P}{1+{f}^{2}}}}f{ K}\),

\(k_{12}=C+\lambda \,\sqrt{{\frac{Pf}{1+{f}^{2}}}}\),

\(k_{13}=\sqrt{{\frac{P}{1+{f}^{2}}}}f\delta \,{ K}+\gamma \,\sqrt{{ \frac{P}{1+{f}^{2}}}}f+\nu \,\sqrt{{\frac{P}{1+{f}^{2}}}}f{ K}\),

\(k_{14}=\lambda \,\sqrt{{\frac{Pf}{1+{f}^{2}}}}\),

\(k_{21}=-\sqrt{{\frac{P}{1+{f}^{2}}}}f\delta \,{ K}+\gamma \,\sqrt{{ \frac{P}{1+{f}^{2}}}}f-\nu \,\sqrt{{\frac{P}{1+{f}^{2}}}}f{ K}\),

\(k_{22}=\lambda \,\sqrt{{\frac{Pf}{1+{f}^{2}}}}\),

\(k_{23}=\gamma \,\sqrt{{\frac{P}{1+{f}^{2}}}}f-\sqrt{{\frac{P}{1+{f}^{2}}}} f\delta \,{ K}-\alpha \,{ K}-\nu \,\sqrt{{\frac{P}{1+{f}^ {2}}}}f{ K}+{ K}+1/2\,\beta _{{2}}{\Omega }^{2}\),

\(k_{24}=C+\lambda \,\sqrt{{\frac{Pf}{1+{f}^{2}}}}\),

\(k_{31}=C+\lambda \,\sqrt{{\frac{Pf}{1+{f}^{2}}}}\),

\(k_{32}=-{ K}+\gamma \,\sqrt{{\frac{P}{1+{f}^{2}}}}+\alpha \,{ K }+1/2\,\beta _{{2}}{\Omega }^{2}+\sqrt{{\frac{P}{1+{f}^{2}}}}\delta \,{K}+\nu \,\sqrt{{\frac{P}{1+{f}^{2}}}}{K}\),

\(k_{33}=\lambda \,\sqrt{{\frac{Pf}{1+{f}^{2}}}}\),

\(k_{34}=\nu \,\sqrt{{\frac{P}{1+{f}^{2}}}}{K}+\sqrt{{\frac{P}{1+{f} ^{2}}}}\delta \,{K}+\gamma \,\sqrt{{\frac{P}{1+{f}^{2}}}}\),

\(k_{41}=\lambda \,\sqrt{{\frac{Pf}{1+{f}^{2}}}}\),

\(k_{42}=-\sqrt{{\frac{P}{1+{f}^{2}}}}\delta \,{K}+\gamma \,\sqrt{{ \frac{P}{1+{f}^{2}}}}-\nu \,\sqrt{{\frac{P}{1+{f}^{2}}}}{K}\),

\(k_{43}=C+\lambda \,\sqrt{{\frac{Pf}{1+{f}^{2}}}}\),

\(k_{44}=\gamma \,\sqrt{{\frac{P}{1+{f}^{2}}}}-\alpha \,{K}-\sqrt{{ \frac{P}{1+{f}^{2}}}}\delta \,{K}+1/2\,\beta _{{2}}{\Omega }^{2} -\nu \,\sqrt{{\frac{P}{1+{f}^{2}}}}{K}+{K}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dépélair, B., Douvagaï, Houwe, A. et al. Effects of ellipticity angle on soliton solutions and modulation instability spectra in two-core birefringent optical fibers. Opt Quant Electron 53, 322 (2021). https://doi.org/10.1007/s11082-021-02938-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-02938-4

Keywords

Navigation