Skip to main content

Non local effects in cone-shaped metamaterials


Light-matter interactions in a material may be dramatically influenced by the features of the medium. Moreover, the electromagnetic characteristics of the material in the nearby areas may make a dramatic impact as well. Following the first scenario, the medium is considered to be local, whereas in the other case, it is nonlocal. It has been demonstrated by the current works on light-matter interactions in composites that novel optical phenomena is enabled by nonlocal effects. The former can not be treated in case of local effective medium description.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. Aspect, A., Grangier, P., Roger, G.: Experimental realization of einstein-podolsky-rosenbohm gedankenexperiment: a new violation of Bell’s inequalities. Phys. Rev. Lett. 49, 91–94 (1982)

    ADS  Article  Google Scholar 

  2. Bell, J.S.: On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys. 38, 447–452 (1966)

    ADS  MathSciNet  Article  Google Scholar 

  3. de Broglie, L.: A tentative theory of light quanta. Philos. Mag. Lett. 86, 411–423 (2006)

    ADS  Article  Google Scholar 

  4. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)

    ADS  Article  Google Scholar 

  5. Elser, J., Podolskiy, V.A., Salakhutdinov, I., Avrutsky, I.: Nonlocal effects in effective-medium response of nanolayered metamaterials. Appl. Phys. Lett. 90, 191109 (2007)

    ADS  Article  Google Scholar 

  6. Freedman, S.J., Clauser, J.F.: Experimental test of local hidden-variable theories. Phys. Rev. Lett. 28, 938–941 (1972)

    ADS  Article  Google Scholar 

  7. Garnett, M.: Colors in metal glasses and in metallic films. Philos. Trans. R. Soc.A 3, 385–420 (1904)

    ADS  MATH  Google Scholar 

  8. Ginzburg, P., Roth, D.J., Nasir, M.E., Segovia, P., Krasavin, A.V., Levitt, J., Hirvonen, L.M., Wells, B., Suhling, K., Richards, D., Podolskiy, V.A., Zayats, A.V.: “Spontaneous emission in non-local materials.” Light: Sci Appl. 6, e16273 (2017)

    Article  Google Scholar 

  9. Hanson, G.W., Forati, E., Silveirinha, M.G.: Modeling of spatially-dispersive wire media: transport representation, comparison with natural materials, and additional boundary conditions. IEEE Trans. Antennas Propag. 60, 4219–4232 (2012)

    ADS  MathSciNet  Article  Google Scholar 

  10. Jacob, Z., Smolyaninov, I.I., Narimanov, E.E.: Broadband purcell effect: radiative decay engineering with metamaterials. Appl. Phys. Lett. 100, 181105 (2012)

    ADS  Article  Google Scholar 

  11. Johnson, P.B., Christy, R.W.: Optical constants of the noble metals. Phys. Rev. B 6, 4370 (1972)

    ADS  Article  Google Scholar 

  12. Krishnamoorthy, H.N.S., Jacob, Z., Narimanov, E., Kretzschmar, I., Menon, V.M.: Topological transitions in metamaterials. Science 336, 205 (2012)

    ADS  MathSciNet  Article  Google Scholar 

  13. Naik, G.V., Shalaev, V.M., Boltasseva, A.: Alternative plasmonic materials: beyond gold and silver. Adv. Mater. 25, 3264–3294 (2013)

    Article  Google Scholar 

  14. Oubre, C., Nordlander, P.: Finite-difference time-domain studies of the optical properties of nanoshell dimers. J. Phys. Chem. B 109(20), 10042–10051 (2005)

    Article  Google Scholar 

  15. Pollard, R.J., Murphy, A., Hendren, W.R., Evans, P.R., Atkinson, R., Wurtz, G.A., Zayats, A.V., Podolskiy, V.A.: Optical nonlocalities and additional waves in epsilon-near-zero metamaterials. Phys. Rev. Lett. 102, 127405 (2009)

    ADS  Article  Google Scholar 

  16. Purcell, E.M.: Spontaneous emission probabilities at radio frequencies. Phys. Rev. B 69, 674 (1946)

    Article  Google Scholar 

  17. Silveirinha, M.G.: Nonlocal homogenization model for a periodic array of ϵ-negative rods. Phys. Rev. E 73, 046612 (2006)

    ADS  Article  Google Scholar 

  18. Tumkur, T.U., Kitur, J.K., Bonner, C.E., Poddubny, A.N., Narimanov, E.E., Noginov, M.A.: Control of Förster energy transfer in the vicinity of metallic surfaces and hyperbolic metamaterials. Faraday Discuss 178, 395 (2015)

    ADS  Article  Google Scholar 

  19. Vasilantonakis, N., Wurtz, G.A., Podolskiy, V.A., Zayats, A.V.: Refractive index sensing with hyperbolic metamaterials: strategies for biosensing and nonlinearity enhancement. Opt. Express 23, 14329–14343 (2015)

    ADS  Article  Google Scholar 

  20. Wangberg, R., Elser, J., Narimanov, E.E., Podolskiy, V.A.: Nonmagnetic nanocomposites for optical and infrared negative-refractive-index media. J. Opt. Soc. Am. B 23, 498–505 (2006)

    ADS  Article  Google Scholar 

  21. Wells, B.M., Zayats, A.V., Podolskiy, V.A.: Nonlocal optics of plasmonic nanowire metamaterials. Phys. Rev. B: Condens. Matter Mater. Phys. 89, 035111 (2014)

    ADS  Article  Google Scholar 

  22. Wells, B., Kudyshev, Zh.A., Litchinitser, N., Podolskiy, V.A.: Nonlocal effects in transition hyperbolic metamaterials. ACS Photonics 4, 2470–2478 (2017)

    Article  Google Scholar 

  23. Zhukovsky, S.V., Andryieuski, A., Takayama, O., Shkondin, E., Malureanu, R., Jensen, F., Lavrinenko, A.V.: Experimental demonstration of effective medium approximation breakdown in deeply subwavelength all-dielectric multilayers. Phys. Rev. Lett. 115, 177402 (2015)

    ADS  Article  Google Scholar 

Download references


This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska Curie grant agreement No 713694 and from Engineering and Physical Sciences Research Council (EPSRC) (Grant No. EP/R024898/1). The work of E.U. Rafailov was partially funded by the Ministry of Science and Higher Education of the Russian Federation as part of World-class Research Center program: Advanced Digital Technologies (contract No. 075-15-2020-934 dated 17.11.2020).

Author information



Corresponding author

Correspondence to Tatjana Gric.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gric, T., Rafailov, E.U. Non local effects in cone-shaped metamaterials. Opt Quant Electron 53, 301 (2021).

Download citation


  • Non local
  • Metamaterial