Skip to main content
Log in

Construction of a dual-core hollow waveguide for visible and mid-infrared light transmission based on PTFE tubing and UV gel

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This work proposes a facile approach to fabricate a dual-core hollow waveguide based on two common and low-cost raw materials, namely polytetrafluoroethylene (PTFE) tube and ultraviolet (UV) gel. A silica glass tube is nested inside a heat-shrinkable PTFE tube. After heat treatment at 350 °C, the PTFE tube shrinks and then transforms into the low-index polymer on the outside of the silica tube. The PTFE-coated silica glass tubing is filled with UV gel followed by inserting a typical Ag/AgI mid-infrared (IR) hollow optical fiber. The UV gel is cured by UV radiation, forming a solid low-index layer between the PTFE-coated silica glass tubing and the Ag/AgI hollow optical fiber. A visible laser beam can be transmitted at a loss of 0.4 dB/m through the silica annulus between the low-index PTFE and UV gel layer. A 10.6-μm-wavelength CO2 laser beam is delivered through the Ag/AgI hollow optical fiber (core size 530 μm) and the transmission loss goes up from 1.63 to 3.22 dB/m as the bending angle increases from 0° to 90°.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bledt, C.M., Harrington, J.A.: Silver and silver/polystyrene coated hollow glass waveguides for the transmission of visible and infrared radiation. In: Proceedings of the SPIE-The International Society for Optical Engineering, vol. 8218, p. 821809 (2012). https://doi.org/10.1117/12.912198

  • Bledt, C.M., Melzer, J.E., Harrington, J.A.: Theoretical and experimental investigation of infrared properties of tapered silver/silver halide-coated hollow waveguides. Appl. Opt. 52(16), 3703–3712 (2013). https://doi.org/10.1364/ao.52.003703

    Article  ADS  Google Scholar 

  • Gregory, C.C., Harrington, J.A.: Attenuation, modal, and polarization properties of n > 1, hollow dielectric waveguides. Appl. Opt. 32, 5302–5309 (1993)

    Article  ADS  Google Scholar 

  • Fu, X., Li, G., Zhang, W., Zhong, Y., Lu, X., Yue, F., Jing, C., Chu, J.: Transmission behaviors of metallic ATR mid-infrared hollow waveguide at low temperature and performance improvement. Opt. Commun. (2020). https://doi.org/10.1016/j.optcom.2019.124821

    Article  Google Scholar 

  • Harrington, J.A.: Infrared fibers and their applications. SPIE Press (2003)

    Google Scholar 

  • Kawamura, J., Paine, S., Papa, D.C.: Spectroscopic measurements of optical elements. In: Seventh International Symposium on Space Terahertz Technology (1996)

  • Jing, C., Kendall, W., Harrington, J.A.: A simple way to establish a dual-core hollow fiber for laser surgery applications. In: Proceedings of the SPIE-Progress in Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications, vol. 9702, p. 97020D (2016)

  • Kendall, W., Harrington, J.A.: Silver/polymer coated hollow glass waveguides for mid-IR transmission. In: Proceedings of the SPIE-Progress in Biomedical Optics and Imaging, vol. 10058, p. 100580Z (2017). https://doi.org/10.1117/12.2255846

  • Kendall, W., Harrington, J.A.: Multilayer polymer dielectric films for hollow glass waveguides. In: Proceedings of the SPIE-Progress in Biomedical Optics and Imaging, vol. 10488, p. 1048812 (2018). https://doi.org/10.1117/12.2287441

  • Melzer, J.E., Harrington, J.A.: Investigation of silver-only and silver/TOPAS coated hollow glass waveguides for visible and NIR laser delivery. In: Proceedings of the SPIE-Optical Fibers and Sensors for Medical Diagnostics and Treatment, vol. 9317, p. 93170H (2015)

  • Melzer, J.E., Navarro-Cia, M., Mitrofanov, O., Harrington, J.A.: Silver-coated teflon hollow waveguides for the delivery of terahertz radiation. In: Proceedings of the SPIE-Progress in Biomedical Optics and Imaging, vol. 8938, p. 89380I (2014). https://doi.org/10.1117/12.2041606

  • Milstein, Y., Allon, D.M., Harrington, J., Bledt, C., Gannot, I.: Photothermal imaging bundle system for estimating tissue oxygen saturation. In: Proceedings of the SPIE-The International Society for Optical Engineering, vol. 8218, p. 82180D (2012). https://doi.org/10.1117/12.917008

  • Nubling, R.K.: Launch conditions and mode coupling in hollow-glass waveguides. Opt. Eng. 37(9), 2454–2458 (1998)

    Article  ADS  Google Scholar 

  • Navarro-Cia, M., Melzer, J.E., Harrington, J.A., Mitrofanov, O.: Silver-coated teflon tubes for waveguiding at 1–2 THz. J. Infrared Millim. Terahertz Waves 36(6), 542–555 (2015). https://doi.org/10.1007/s10762-015-0157-5

    Article  Google Scholar 

  • Peng, C., Zheng, J., He, M., Zhao, Z., Zhang, X., Zhu, X.S., Jing, C., Chang, C., Shi, Y.W.: Development of flexible mid-infrared light delivery system with bioprobe for beam control. Opt. Lasers Eng. (2020). https://doi.org/10.1016/j.optlaseng.2020.106261

    Article  Google Scholar 

  • Rabii, C.D., Harrington, J.A.: Optical properties of dual-core hollow waveguides. Appl. Opt. 35(31), 6249–6252 (1996). https://doi.org/10.1364/ao.35.006249

    Article  ADS  Google Scholar 

  • Sun, B.S., Zeng, X., Iwai, K., Miyagi, M., Chi, N., Shi, Y.W.: Experimental investigation on liquid-phase fabrication techniques for multilayer infrared hollow fiber. Opt. Fiber Technol. 17(4), 281–285 (2011). https://doi.org/10.1016/j.yofte.2011.04.003

    Article  ADS  Google Scholar 

  • Sun, Z., Fu, X., Li, G., Zhang, W., Zhong, Y., Wang, X., Jing, C., Lu, X., Yue, F., Chu, J.: Metallic hollow waveguide based on GeO2–NaOH precursor solution for transmission of CO2 laser radiations. Opt. Quant. Electron. (2018). https://doi.org/10.1007/s11082-018-1662-2

    Article  Google Scholar 

  • Tran, D.C., Levin, K.H., Fisher, C.F., Burk, M.J., Sigel, G.H.J.: Rayleigh scattering in fluoride glass optical fibres. Electron. Lett. 19(5), 165–166 (1983)

    Article  ADS  Google Scholar 

  • Wang, X., Guo, H., Wang, L., Yue, F., Jing, C., Chu, J.: Preparation and transmission characteristics of a mid-infrared attenuated total reflection hollow waveguide based on a stainless steel capillary tube. Appl. Opt. 55(23), 6404–6409 (2016). https://doi.org/10.1364/ao.55.006404

    Article  ADS  Google Scholar 

  • Yamaki, T., Asano, M., Maekawa, Y., Morita, Y., Suwa, T., Chen, J.H., Tsubokawa, N., Kobayashi, K., Kubota, H., Yoshida, M.: Radiation grafting of styrene into crosslinked PTEE films and subsequent sulfonation for fuel cell applications. Radiat. Phys. Chem. 67(3–4), 403–407 (2003). https://doi.org/10.1016/s0969-806x(03)00075-6

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 61775060, 61275100, 61761136006 and 61790583).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengbin Jing.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, S., Sun, Z., Li, G. et al. Construction of a dual-core hollow waveguide for visible and mid-infrared light transmission based on PTFE tubing and UV gel. Opt Quant Electron 53, 214 (2021). https://doi.org/10.1007/s11082-021-02893-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-02893-0

Keywords

Navigation