Skip to main content
Log in

Carrier transport mechanism associated with the thickness of the absorbing layer in GaAs-based blocked‐impurity‐band (BIB) far‐infrared detectors

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Carrier transport mechanism associated with the thickness of the absorbing layer in GaAs-based blocked-impurity-band (BIB) far-infrared detector has been investigated in detail. It is found that responsivity linearly increases with the increased thickness of absorbing layer first, and after achieving a peak value, and then starts dropping slowly. In order to explore the carrier transport mechanism behind the phenomena, the physical meaning of responsivity has been illuminated first, and then the vertical profiles of the optical generation rate, the electric field intensity, and the carrier mobility have been obtained, respectively. It is demonstrated that the carrier transport mechanism associated with the thickness of the absorbing layer can be attributed to the competing effects of the optical generation rate, the electric field intensity, and the carrier mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Casey, C.M., Narayanan, D., Cooray, A.: Dusty star-forming galaxies at high redshift. Phys. Rep. 541, 45–161 (2014)

    Article  ADS  Google Scholar 

  • Hu, W.D., Chen, X.S., Ye, Z.H., Feng, A.L., Yin, F., Zhang, B., Liao, L., Lu, W.: Dependence of ion-implant-induced LBIC novel characteristics on excitation intensity for long-wavelength HgCdTe-based photovoltaic infrared detector pixel arrays. IEEE J. Sel. Topics Quantum Electron. 19, 4100107 (2013)

    Article  Google Scholar 

  • Hu, W.D., Ye, Z., Liao, L., Chen, H., Chen, L., Ding, R., He, L., Chen, X., Lu, W.: A 128 × 128 longwavelength/mid-wavelength two-color HgCdTe infrared focal plane array detector with ultra-low spectral crosstalk. Opt. Lett. 39, 5130–5133 (2014)

    Article  Google Scholar 

  • He, J.L., Li, Q., Wang, P., Wang, F., Gu, Y., Shen, C., Luo, M., Yu, C.H., Chen, L., Chen, X.S., Lu, W., Hu, W.D.: Design of a novel bandgap-engineered barrier-blocking HOT HgCdTe long-wavelength infrared avalanche photodiode. Optics express 28, 33556–33563 (2020)

    Article  ADS  Google Scholar 

  • Liu, J., Dai, J., Chin, S.L., Zhang, X.C.: Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases. Nat. Photon 4, 627–631 (2010)

    Article  ADS  Google Scholar 

  • Liu, Z.J., Liang, Z.Q., Tang, W., Xu, X.D.: Design and fabrication of low-deformation micro-bolometers for THz detectors. Infrared Phys. Technol. 105, 103241 (2020)

    Article  Google Scholar 

  • Li, Q., Wang, F., Wang, P., Zhang, L.L., He, J.L., Chen, L., Martyniuk, P., Rogalski, A., Chen, X.S., Lu, W., Hu, W.D.: Enhanced performance of HgCdTe mid-wavelength infrared electron avalanche photodetectors with guard ring designs. IEEE Trans. on Electron Devices. 67, 542–546 (2020)

    Article  ADS  Google Scholar 

  • Minerbi, E., Keren-Zur, S., Ellenbogen, T.: Nonlinear metasurface Fresnel zone plates for terahertz generation and manipulation. Nano Lett. 19, 6072–6077 (2019)

    Article  ADS  Google Scholar 

  • Robinson, T.D., Meadows, V.S., Crisp, D., Deming, D., A’Hearn, M.F., Charbonneau, D., Livengood, T.A.: Earth as an extrasolar planet: Earth model validation using EPOXI earth observations. Astrobiology 11, 393–408 (2011)

    Article  ADS  Google Scholar 

  • Sizov, F.: Terahertz radiation detectors: the state-ofthe-art. Semicond. Sci. Technol. 33, 123001 (2018)

    Article  ADS  Google Scholar 

  • Shen, W.Z.: Recent progress in mid- and far-infrared semiconductor detectors. Int. J. Infrared Millim. Waves 21, 1739 (2000)

    Article  Google Scholar 

  • Shi, M.L., Yu, M.X., Li, G.P., Wang, M.Y.: A THz fourth-harmonic conversion system expanding microwave to THz band. Infrared Phys. Technol. 107, 103217 (2020)

    Article  Google Scholar 

  • Tan, C.L., Mohseni, H.: Emerging technologies for high performance infrared detectors. Nanophotonics 7, 169 (2018)

    Article  Google Scholar 

  • Wang, X.D., Hu, W.D., Chen, X.S., Lu, W.: The study of self-heating and hot-electron effects for AlGaN/GaN double-channel HEMTs. IEEE Trans. Electron Devices 59, 1393–1401 (2012)

    Article  ADS  Google Scholar 

  • Wang, X., Hu, W., Chen, X., Xu, J., Wang, L., Li, X., Lu, W.: Dependence of dark current and photoresponse characteristics on polarization charge density for GaN-based avalanche photodiodes. J. Phys. D: Appl. Phys. 44, 405102 (2011)

    Article  Google Scholar 

  • Wang, X.D., Hu, W.D., Pan, M., Hou, L.W., Xie, W., Xu, J.T., Li, X.Y., Chen, X.S., Lu, W.: Study of gain and photoresponse characteristics for back-illuminated separate absorption and multiplication GaN avalanche photodiodes. J. Appl. Phys. 115, 013103 (2014)

    Article  ADS  Google Scholar 

  • Wang, X., Wang, B., Chen, X., Chen, Y., Hou, L., Xie, W., Pan, M.: Roles of blocking layer and anode bias in processes of impurity-band transition and transport for GaAs-based blocked-impurity-band detectors. Infrared Phys. Technol. 79, 165–170 (2016a)

    Article  ADS  Google Scholar 

  • Wang, X., Wang, B., Chen, Y., Hou, L., Xie, W., Chen, X., Pan, M.: Spectral response characteristics of novel ion-implanted planar GaAs blocked-impurity-band detectors in the terahertz domain. Opt. Quantum Electron. 48, 518 (2016b)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Shanghai Rising-Star Program (Grant No. 17QB1403900), the National Natural Science Foundation of China (Grant Nos. 61404120, and 61705201), Shanghai Sailing Program (Grant No. 17YF1418100), and Shanghai Youth Top-Notch Talent Development Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weiyi Ma or Yulu Chen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Numerical Simulation of Optoelectronic Devices.

Guest edited by Stefan Schulz, Silvano Donati, Karin Hinzer, Weida Hu, Slawek Sujecki, Alex Walker and Yuhrenn Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Ma, W., Chen, Y. et al. Carrier transport mechanism associated with the thickness of the absorbing layer in GaAs-based blocked‐impurity‐band (BIB) far‐infrared detectors. Opt Quant Electron 53, 250 (2021). https://doi.org/10.1007/s11082-021-02886-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-02886-z

Keywords

Navigation