Skip to main content
Log in

Multimode hexagonal photonic crystal fiber for extremely negative chromatic dispersion and low confinement loss

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, a multi-mode hexagonal photonic crystal fiber is proposed. The cladding of the proposed PCF has circular air-holes arranged in five hexagonal rings whereas core has tiny circular air-holes arranged in two different rings. This structure is designed and simulated using COMSOL Multiphysics which is based on finite element method. The performance parameters viz chromatic dispersion, confinement loss, V-number, effective area, and nonlinearity coefficient are determined by wavelength interrogation method and optimized with respect to size and number of tiny circular air-holes in the inner ring of the core. The results show that V-number is greater than 3.1416 over wide range of spectrum which confirms the multimode operation of the fiber. The obtained value of performance parameters at 1.55 µm wavelength are; negative dispersion (− 2159 ps nm−1 km−1), confinement loss of (3.61 × 10−3 dB km−1), V-number (3.66), effective area (3.44 µm2), and nonlinearity coefficient (27.5 w−1 km−1). The extremely negative dispersion alongwith very low confinement loss at the center wavelength of main communication window, i.e., 1.55 µm suggests that the proposed PCF is best suited for the dispersion compensation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Ademgil, H., Haxha, S.: Highly birefringent nonlinear PCF for optical sensing of analytes in aqueous solutions. Optik 127(16), 6653–6660 (2016)

    Article  ADS  Google Scholar 

  • Agrawal, A., Kejalakshmy, N., Rahman, B.M.A., Grattan, K.T.V.: Polarization and dispersion properties of elliptical hole golden spiral photonic crystal fiber. Appl. Phys. B 99(4), 717–726 (2010)

    Article  ADS  Google Scholar 

  • Agrawal, A., Azabi, Y.O., Rahman, B.M.A.: Staking the equianguar spiral. IEEE Photon. Technol. Lett. 25, 291–294 (2013)

    Article  ADS  Google Scholar 

  • Bise, R.T., Trevor, D.J.: Sol–gel derived microstructured fiber: fabrication and characterization. In: OFC/NFOEC Technical Digest. Optical Fiber Communication Conference (2005). Anaheim, CA, 3. https://doi.org/10.1109/OFC.2005.192772

  • Chen, D., Shen, L.: Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss. IEEE Photonics Technol. Lett. 19(4), 185–187 (2007)

    Article  ADS  Google Scholar 

  • Chou Chau, Y.F., Lim, C.M., Yoong, V.N., Syafi’ie Idris, M.N.: A simple structure of all circular-air-holes photonic crystal fiber for achieving high birefringence and low confinement loss. J. Appl. Phys. 118(24), 243102 (2015)

    Article  ADS  Google Scholar 

  • da Silva, J.P., Bezerra, D.S., Rodriguez-Esquerre, V.F., da Fonseca, I.E., Hernandez-Figueroa, H.E.: Ge-doped defect-core microstructured fiber design by genetic algorithm for residual dispersion compensation. IEEE Photonics Technol. Lett. 22(18), 1337–1339 (2010)

    Article  ADS  Google Scholar 

  • Das, S., De, M., Singh, V.K.: Single mode dispersion shifted photonic crystal fiber with liquid core for optofluidic applications. Opt. Fiber Technol. 53, 102012 (2019)

    Article  Google Scholar 

  • Ghosh, D., Bose, S., Roy, S., Bhadra, S.K.: Design and fabrication of microstructured optical fibers with optimized core suspension for enhanced supercontinuum generation. J. Lightwave Technol. 33(19), 4156–4162 (2015)

    Article  ADS  Google Scholar 

  • Haque, M.M., Rahman, M.S., Habib, M.S., Habib, M.S.: A single mode hybrid cladding circular photonic crystal fiber dispersion compensation and sensing applications. Photonics Nanostruct. Fundam. Appl. 14, 63–70 (2015)

    Article  ADS  Google Scholar 

  • Hasan, M.I., Habib, M.S., Habib, M.S., Razzak, S.A.: Highly nonlinear and highly birefringent dispersion compensating photonic crystal fiber. Opt. Fiber Technol. 20(1), 32–38 (2014a)

    Article  ADS  Google Scholar 

  • Hasan, M.I., Habib, M.S., Razzak, S.M.A.: An elliptical-shaped core residual dispersion compensating octagonal photonic crystal fiber. IEEE Photonics Technol. Lett. 26(20), 2047–2050 (2014b)

    Article  ADS  Google Scholar 

  • Hasan, M.I., Razzak, S.A., Habib, M.S.: Design and characterization of highly birefringent residual dispersion compensating photonic crystal fiber. J. Lightwave Technol. 32(23), 3976–3982 (2014c)

    Article  ADS  Google Scholar 

  • Hasan, M.I., Mahmud, R.R., Morshed, M., Hasan, M.R.: Ultra-flattened negative dispersion for residual dispersion compensation using soft glass equiangular spiral photonic crystal fiber. J. Mod. Opt. 63(17), 1681–1687 (2016a)

    Article  ADS  Google Scholar 

  • Hasan, M.R., Anower, M.S., Hasan, M.I.: A polarization maintaining single-mode photonic crystal fiber for residual dispersion compensation. IEEE Photonics Technol. Lett. 28(16), 1782–1785 (2016b)

    Article  ADS  Google Scholar 

  • Hossain, M.A., Namihira, Y., Islam, M.A., Hirako, Y.: Polarization maintaining highly nonlinear photonic crystal fiber for supercontinuum generation at 1.55 μm. Opt. Laser Technol. 44(5), 1261–1269 (2012)

    Article  ADS  Google Scholar 

  • Islam, M.A., Alam, M.S.: Design of a polarization-maintaining equiangular spiral photonic crystal fiber for residual dispersion compensation over E + S + C + L + U wavelength bands. IEEE Photonics Technol. Lett. 24(11), 930–932 (2012a)

    Article  ADS  Google Scholar 

  • Islam, M.A., Alam, M.S.: Design optimization of equiangular spiral photonic crystal fiber for large negative flat dispersion and high birefringence. J. Lightwave Technol. 30(22), 3545–3551 (2012b)

    Article  ADS  Google Scholar 

  • Li, J., Wang, J., Teng, Y., Xu, Z., Cheng, J.: Broadband supercontinuum generation based on filled structural photonic crystal fibers with low incident optical power. Opt Quant Electron. 52(10), 1–11 (2020)

    Article  Google Scholar 

  • Liu, Z., Wu, C., Tse, M.L.V., Lu, C., Tam, H.Y.: Ultrahigh birefringence index-guiding photonic crystal fiber and its application for pressure and temperature discrimination. Opt. Lett. 38(9), 1385–1387 (2013)

    Article  ADS  Google Scholar 

  • Mamtaz, R., Ahmed, K., Paul, B.K., et al.: Design and FEM analysis of pentagonal photonic crystal fiber for highly non-linear applications. Opt Quant Electron. 52, 455 (2020)

    Article  Google Scholar 

  • Prajapati, Y.K., Srivastava, V.K., Singh, V., Saini, J.P.: Effect of germanium doping on the performance of silica based photonic crystal fiber. Optik 155, 149–156 (2018)

    Article  ADS  Google Scholar 

  • Prajapati, Y.K., Kumar, R., Singh, V.: Design of a photonic crystal fiber for dispersion compensation and sensing applications using modified air holes of the cladding. Braz. J. Phys. 49(5), 745–751 (2019)

    Article  ADS  Google Scholar 

  • Razzak, S.A., Namihira, Y.: Proposal for highly nonlinear dispersion-flattened octagonal photonic crystal fibers. IEEE Photonics Technol. Lett. 20(4), 249–251 (2008)

    Article  ADS  Google Scholar 

  • Saitoh, K., Koshiba, M.: Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers. IEEE J. Quantum Electron. 38(7), 927–933 (2002)

    Article  ADS  Google Scholar 

  • Sharma, M., Borogohain, N., Konar, S.: Index guiding photonic crystal fibers with large birefringence and walk-off. J. Lightwave Technol. 31(21), 3339–3344 (2013)

    Article  ADS  Google Scholar 

  • Tee, D.C., Bakar, M.A., Tamchek, N., Adikan, F.M.: Photonic crystal fiber in photonic crystal fiber for residual dispersion compensation over E + S + C + L + U wavelength bands. IEEE Photonics J. 5(3), 7200607–7200607 (2013)

    Article  ADS  Google Scholar 

  • Wang, W., Yang, B., Song, H., Fan, Y.: Investigation of high birefringence and negative dispersion photonic crystal fiber with hybrid crystal lattice. Optik Int. J. Light Electron Optics 124(17), 2901–2903 (2013)

    Article  Google Scholar 

  • Xu, D., Song, H., Wang, W., Fan, Y., Yang, B.: Numerical analysis of a novel high birefringence photonic crystal fiber. Optik. 124(12), 1290–1293 (2013)

    Article  ADS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All the authors equally contributed to the redaction of this article.

Corresponding author

Correspondence to Yogendra Kumar Prajapati.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, S.K., Maurya, J.B., Verma, R.N. et al. Multimode hexagonal photonic crystal fiber for extremely negative chromatic dispersion and low confinement loss. Opt Quant Electron 53, 130 (2021). https://doi.org/10.1007/s11082-021-02779-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-02779-1

Keywords

Navigation