Skip to main content
Log in

A novel soliton solutions for the fractal Radhakrishnan–Kundu–Lakshmanan model arising in birefringent fibers

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This paper introduces a fractal model of the Radhakrishnan–Kundu–Lakshmanan (RKL) occurring in a fascinating physical phenomenon in birefringent fibers. He's variational approach is used to identify novel fractal RKL-equation optical soliton solutions. The required novel criteria to ensure the existence of appropriate solitons are provided. The three-dimensional surfaces of the recording solutions are demonstrated by specifying a variety of suitable parameter values. The focus of this paper is on the groundbreaking RKL-equation work frontiers and other associated nonlinear evolution models in the field of optical solitons and solitary waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arshed, S., Biswas, A., Guggilla, P., Alshomrani, A.S.: Optical solitons for Radhakrishnan–Kundu–Lakshmanan equation with full nonlinearity. Phys. Lett. A 384, 126191 (2020)

    Article  MathSciNet  Google Scholar 

  • Biswas, A.: 1-soliton solution of the generalized Radhakrishnan, Kundu Lakshmanan equation. Phys. Lett. A 373, 2546–2548 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  • Biswas, A.: Optical soliton perturbation with Radhakrishnan–Kundu–Lakshmanan equation by traveling wave hypothesis. Optik 171, 217–220 (2018)

    Article  ADS  Google Scholar 

  • Biswas, A., Ekici, M., Sonmezoglu, A., Alshomrani, A.S.: Optical solitons with Radhakrishnan–Kundu–Lakshmanan equation by extended trial function scheme. Optik 160, 415–427 (2018a)

    Article  ADS  Google Scholar 

  • Biswas, A., Yildirim, Y., Yasar, E., Mahmood, M.F., Alshomrani, A.S., Zhou, Q., Moshokoa, S.P., Belic, M.: Optical soliton perturbation for Radhakrishnan–Kundu–Lakshmanan equation with a couple of integration schemes. Optik 163, 126–136 (2018b)

    Article  ADS  Google Scholar 

  • Gonzalez-Gaxiola, O., Biswas, A.: Optical solitons with Radhakrishnan–Kundu–Lakshmanan equation by laplace-adomian decomposition method. Optik 179, 434–442 (2019)

    Article  ADS  Google Scholar 

  • Goufo, E.F.D.: Fractal and fractional dynamics for a 3D autonomous and two-wing smooth chaotic system. Alexandria Engin. J. 59, 2469–2476 (2020)

    Article  Google Scholar 

  • He, J.H.: Variational principles for some nonlinear partial differential equations with variable coefficients. Chaos Solit. Frac. 19, 847–851 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  • He, J.H.: A new fractal derivation. Therm. Sci. 15, S145–S147 (2011)

    Article  Google Scholar 

  • He, J.H.: Fractal calculus and its geometrical explanation. Results Phys. 10, 272–276 (2018)

    Article  ADS  Google Scholar 

  • He, J.H.: Generalized variational principles for buckling analysis of circular cylinders. Acta Mech. 231, 899–906 (2020a)

    Article  MathSciNet  Google Scholar 

  • He, J.H.: A fractal variational theory for one-dimensional compressible flow in a microgravity space. Fractals 28, 2050024 (2020b)

    Article  ADS  Google Scholar 

  • Hesameddini, E., Latifizadeh, H.: An optimal choice of initial solutions in the homotopy perturbation method. Int J. Nonlin. Sci. Numer. Simul. 10, 1389–1398 (2009)

    MATH  Google Scholar 

  • Hetmaniok, E., Nowak, I., Slota, D., Wituła, R.: Application of the homotopy perturbation method for the solution of inverse heat conduction problem. Int. Commun. Heat Mass Trans. 39, 30–35 (2012)

    Article  Google Scholar 

  • Ji, F.Y., He, C.H., Zhang, J.J., He, J.H.: A fractal Boussinesq equation for nonlinear transverse vibration of a nanofiber-reinforced concrete pillar. Appl. Math. Model. 82, 437–448 (2020)

    Article  MathSciNet  Google Scholar 

  • Khan, Y.: A new necessary condition of soliton solutions for Kawahara equation arising in physics. Optik 155, 273–275 (2018)

    Article  ADS  Google Scholar 

  • Khan, Y.: Fractal higher-order dispersions model and its fractal variational principle arising in the field of physical process. Fluct. Noise Lett. 20, 2150034 (2020c)

    Google Scholar 

  • Khan, Y.: Fractal modification of complex Ginzburg-Landau model arising in the oscillating phenomena. Results Phys. 18, 103324 (2020b)

    Article  Google Scholar 

  • Khan, Y.: A variational approach for novel solitary solutions of FitzHugh–Nagumo equation arising in the nonlinear reaction–diffusion equation. Int J Numer Methods Heat Fluid Flow (2020a). https://doi.org/10.1108/HFF-05-2020-0299

    Article  Google Scholar 

  • Khan, Y.: Maclaurin series method for fractal differential–difference models arising in coupled nonlinear optical waveguides. Fract. 28, 2150004 (2021)

    Article  Google Scholar 

  • Khan, Y., Faraz, N., Yildirim, A.: New soliton solutions of the generalized Zakharov equations using He’s variational approach. App. Math. Lett. 24, 965–968 (2011)

    Article  MathSciNet  Google Scholar 

  • Kudryashov, N.A., Safonova, D.V., Biswas, A.: Painleve analysis and a solution to the traveling wave reduction of the Radhakrishnan–Kundu–Lakshmanan equation. Regul. Chaotic Dyn. 24, 607–614 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  • Ozis, T., Yıldırım, A.: Application of He’s semi-inverse method to the nonlinear Schrodinger equation. Comput. Math. Appl. 54, 1039–1042 (2007)

    Article  MathSciNet  Google Scholar 

  • Rehman, H.U., Saleem, M.S., Sultan, A.M., Iftikhar, M.: Comments on dynamics of optical solitons with Radhakrishnan–Kundu–Lakshmanan model via two reliable integration schemes. Optik 178, 557–566 (2019)

    Article  ADS  Google Scholar 

  • Sturdevant, B., Lott, D.A., Biswas, A.: Topological 1-soliton solution of the generalized Radhakrishnan, Kundu, Lakshmanan equation with nonlinear dispersion. Mod. Phys. Lett. B. 24, 1825–1831 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  • Sulaiman, T.A., Bulut, H., Yel, G., Atas, S.S.: Optical solitons to the fractional perturbed Radhakrishnan–Kundu–Lakshmanan model. Opt. Quant. Electron. 50, 372 (2018)

    Article  Google Scholar 

  • Tao, Z.L.: Variational approach to the Benjamin Ono equation. Nonlin. Analys. Real World Appl. 10, 1939–1941 (2009)

    Article  MathSciNet  Google Scholar 

  • Turkyilmazoglu, M.: Multiple solutions of hydromagnetic permeable flow and heat for viscoelastic fluid. J. Thermophys. Heat Trans. 25, 595–605 (2011a)

    Article  Google Scholar 

  • Turkyilmazoglu, M.: An optimal variational iteration method. Appl. Math. Lett. 24, 762–765 (2011b)

    Article  MathSciNet  Google Scholar 

  • Turkyilmazoglu, M.: An effective approach for approximate analytical solutions of the damped Duffing equation. Phys. Scr. 86, 015301 (2012)

    Article  ADS  Google Scholar 

  • Yıldırım, Y., Biswas, A., Zhou, Q., Alzahrani, A.K., Belic, M.R.: Optical solitons in birefringent fibers with Radhakrishnan–Kundu–Lakshmanan equation by a couple of strategically sound integration architectures. Chin. J. Phys. 65, 341–354 (2020)

    Article  MathSciNet  Google Scholar 

  • Zhang, J.: Variational approach to solitary wave solution of the generalized Zakharov equation. Comput. Math. Appl. 54, 1043–1046 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author extends their appreciation to the Deanship of Scientific Research, University of Hafr Al-Batin for funding this work through the research group project no. (G-108-2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasir Khan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, Y. A novel soliton solutions for the fractal Radhakrishnan–Kundu–Lakshmanan model arising in birefringent fibers. Opt Quant Electron 53, 127 (2021). https://doi.org/10.1007/s11082-021-02775-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-02775-5

Keywords

Navigation