Skip to main content

Wavelength division multiplexing transmission using multimode erbium doped fiber amplifier with elevated refractive index profile

Abstract

An Idea of importing a new ERIP at multimode EDFA is proposed in this paper. This MMEDFA is used for a WDM transmission system and its performance is observed. The 16 signals with seven linearly polarized modes are amplified by this MMEDFA. ERIP is designed by OptiFiber simulation software and performance of this MMEDFA in WDM system is simulated using OptiSystem software. A WDM transmission of 16 signals by using single stage amplification by MMEDFA with maximum gain is not reported in previous works. The performance of this WDM system has been analyzed for the propagating distances up to 42.15 km.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig.3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Andreev, V.A., Bourdine, A.V, Burdin, V.A., Evtushenko, A.S., Halikov, R.H.: Design of low DMD few-mode optical fibers with extremely enlarged core diameter providing nonlinearity suppression for operating over “C”-band central region. In: Optical Technologies for Telecommunications, vol. 10342, International Society for Optics and Photonics, USA (2017).https://doi.org/10.1117/12.2270555

  2. Appaiah, K., Vishwanath, S., Bank, S.R.: Impact of fiber core diameter on dispersion and multiplexing in multimode fiber links. Opt. Express 14, 17158–17171 (2014). https://doi.org/10.1364/oe.22.017158

    ADS  Article  Google Scholar 

  3. Balaniand, W., Saxena, M.: EDFA gain performance analysis at 2Gbits/sec in optical transmission system. Int. J. Multidiscip. Curr. Res. 1, 12–16 (2013)

    Google Scholar 

  4. Bigot, L.: Guillaume Le Cocq, and Yves Quiquempois, few-mode erbium-doped fiber amplifiers: a review. J. Lightwave Technol. 33(3), 588–596 (2015). https://doi.org/10.1109/jlt.2014.2376975

    ADS  Article  Google Scholar 

  5. Bourdine, A., Burdin, V.: Research on the influence of FMF refractive index profile deviation from the optimized form on DMD degradation. In: 2018 Systems of Signals Generating and Processing in the Field of on Board Communications, pp. 1–3. IEEE, 2018.https://doi.org/10.1109/sosg.2018.8350575

  6. Bourdine, A.V., Praporshchikov, D.E., Yablochkin, K.A.: Investigation of defects of refractive index profile of silica graded-index multimode fibers. Opt. Technol. Telecommun. Proc. of SPIE 7992, 799206 (2011). https://doi.org/10.1117/12.887258

    Article  Google Scholar 

  7. Bourdine, A.V., Burdin, V.A., Delmukhametov, O.R.: Design of refractive index profile for multimode optical fibers with low differential mode delay. J. Optoelectron. Eng. 1, 5–13 (2013)

    Google Scholar 

  8. Carbonneau, T.H., Wisely, D.R.: Opportunities and challenges for optical wireless; the competitive advantage of free space telecommunications links in today’s crowded marketplace in wireless technologies and systems, millimeter-wave and optical. Proc. SPIE 3232, 119–128 (1998). https://doi.org/10.1117/12.301022

    ADS  Article  Google Scholar 

  9. Chan, A.C.O., Premaratne, M.: Dispersion-compensating fiber raman amplifiers with step, parabolic, and triangular refractive index profiles. J. Lightwave Technol. 25, 1190–1197 (2007). https://doi.org/10.1109/jlt.2007.893033

    ADS  Article  Google Scholar 

  10. Chen, M.Y., Zhang, Y.K.: Bend insensitive design of large-mode-area microstructured optical fibers. J. Lightwave Technol. 29, 2216–2222 (2011). https://doi.org/10.1109/jlt.2011.2158066

    ADS  Article  Google Scholar 

  11. Desurvire, E.: Erbium-doped Fiber Amplifiers-Principles and Applications. Wiley, New York (1994). https://doi.org/10.1201/9781315370521-9

    Book  Google Scholar 

  12. Donlagic, D.: A low bending loss multimode fiber transmission system. Opt. Express 17, 22081–22095 (2009). https://doi.org/10.1364/oe.17.022081

    ADS  Article  Google Scholar 

  13. Giles, C.R., Desurvire, E.: Modeling erbium-doped fiber amplifiers. J. Lightwave Technol. 9(2), 271–283 (1991). https://doi.org/10.1109/50.65886

    ADS  Article  Google Scholar 

  14. Lee, J.H., Lee, W.J., Park, N.: Comparative study on temperature dependent multichannel gain and noise figure distortion for 1.48-and 0.98-μm pumped EDFAs. IEEE Photonics Technol. Lett. 10(12), 1721–1723 (1998). https://doi.org/10.1109/68.730481

    ADS  Article  Google Scholar 

  15. Heptonstall, A., et al.: Characterisation of mechanical loss in synthetic fused silica ribbons. Phys. Lett. 354, 353–359 (2006). https://doi.org/10.1016/j.physleta.2006.01.077

    Article  Google Scholar 

  16. Herbster, A.F., Romero, M.A.: EDFA design and analysis for WDM optical systems based on modal multiplexing. J. Microw. Optoelectron. Electromagn. Appl. 16(1), 194–207 (2017). https://doi.org/10.1590/2179-10742017v16i1882

    Article  Google Scholar 

  17. Jung, Y., Alam, S., Li, Z., Dhar, A., Giles, D., Giles, I.P., Sahu, J.K., Poletti, F., Grüner-Nielsen, L., Richardson, D.J.: First demonstration and detailed characterization of a multimode amplifier for space division multiplexed transmission systems. Opt. Express 19, B952–B957 (2011). https://doi.org/10.1364/oe.19.00b952

    Article  Google Scholar 

  18. Kang, Q., Lim, E.-L., Jung, Y., Sahu, J.K., Poletti, F., Baskiotis, C., Alam, S.U., Richardson, D.J.: Accurate modal gain control in a multimode erbium doped fiber amplifier incorporating ring doping and a simple LP01 pump configuration. Opt. Express 20(19), 20835–20843 (2012). https://doi.org/10.1364/oe.20.020835

    ADS  Article  Google Scholar 

  19. Kang, Q., Lim, E., Jun, Y., Jin, X., Payne, F. P., Alam, S., and Richardson, D. J.: Gain equalization of a six-mode-group ring core multimode EDFA, In: 2014 The European Conference on Optical Communication (ECOC), pp. 1–3. IEEE, 2014. https://doi.org/10.1109/ecoc.2014.6964017.

  20. Kingsta, R.M., Sivanantharaja, A.: Numerical design and analysis of multimode fiber with high bend tolerance and bandwidth using refractive index optimization. Opt. Fiber Technol 19, 587–592 (2013). https://doi.org/10.1016/j.yofte.2013.09.004

    ADS  Article  Google Scholar 

  21. Komachi, Y., Aizawa, K. Hollow optical fiber and method for manufacturing the same. U.S. Patent No. 6,735,369, 2004

  22. Lee, C.C., Chi, S.: Three-wavelength-division-multiplexed multichannel subcarrier-multiplexing transmission over multimode fiber with potential capacity of 12 Gb/s. IEEE Photon. Technol. Lett. 11, 1066–1068 (1999). https://doi.org/10.1109/68.775348

    ADS  Article  Google Scholar 

  23. Martelli, C., Canning, J., Gibson, B., et al.: Bend loss in structured optical fibres. Opt. Express 15(26), 17639–17644 (2007). https://doi.org/10.1364/oe.15.017639M

    ADS  Article  Google Scholar 

  24. Napierala, M., Beres-Pawlik, E., Nasilowski, T., et al.: Design of a low-bending-loss large-mode-area photonic crystal fiber. Proc. of SPIE 8426, 84260T (2012). https://doi.org/10.1117/12.921780

    Article  Google Scholar 

  25. Neilson, D.T., Schenfeld, E.: Free-space optical relay for the interconnection of multimode fibers. Appl. Opt. 38(11), 2291–2296 (1999). https://doi.org/10.1364/ao.38.002291

    ADS  Article  Google Scholar 

  26. Pain, S., Biswas, M., Biswas, S.: Gain flattening and noise figure analysis of EDFA WDM configuration for L-band optical communication using wavelength selective attenuator. Photonics Lett. Pol. 5(3), 106–108 (2013). https://doi.org/10.4302/plp.2013.3.09

    Article  Google Scholar 

  27. Ren, G.B., Shum, P., Zhang, L.R., et al.: Design of all solid bandgap fiber with improved confinement and bend losses. IEEE Photonics Technol. Lett. 18, 2560–2562 (2006). https://doi.org/10.1109/lpt.2006.887227

    ADS  Article  Google Scholar 

  28. Seraji, F.E., Kiaee, R.: A revisit of refractive index profiles design for reduction of positive dispersion, splice loss, and enhancement of negative dispersion in optical transmission lines. Int. J. Optics Appl. 4, 62–67 (2014)

    Google Scholar 

  29. Shama, R.T., Alam, N., Yasmin, S., Hossain, M.S., Basak, R.: Design optimization of C-Band 4-Channel WDM optical communication system using EDFA. Trends in Opto. Electro. Optic. Commun. 4(2), 1–8 (2019)

    Google Scholar 

  30. Skorobogatiy, M., Saitoh, K., Koshiba, M.: Fullvectorial coupled mode theory for the evaluation of macrobending loss in multimode fibers. Application to the hollow core photonic bandgap fibers. Opt. Express 16, 14945–14953 (2008). https://doi.org/10.1364/oe.16.014945

    ADS  Article  Google Scholar 

  31. Sokkar, T.Z.N., et al.: Bent induced refractive index profile variation and mode field distribution of step-index multimode optical fiber. Opt. Lasers Eng. 53, 133–141 (2014). https://doi.org/10.1016/j.optlaseng.2013.09.002

    Article  Google Scholar 

  32. Spellmeyer, N.W.: Communications performance of a multimode EDFA. IEEE Photonics Technol. Lett. 12(10), 1337–1339 (2000). https://doi.org/10.1109/68.883822

    ADS  Article  Google Scholar 

  33. Stacey, C.D., Jenkins, J.M.: Demonstration of fundamental mode propagation in highly multimode fiber for high power EDFAs. In: Conference on Lasers and Electro Optics Europe (CLEO 2005), pp. 558, Munich (2005). https://doi.org/10.1109/cleoe.2005.1568335

  34. Vigneswaran, D., Ayyanar, N., Sumathi, M., Mani Rajan, M.S.: Tunable differential modal gain in FM-EDFA system using dual pumping scheme at 100 Gbps system capacity. Photonic Netw. Commun. 34(3), 451–460 (2017). https://doi.org/10.1007/s11107-017-0703-2l

    Article  Google Scholar 

  35. Zhu, Y., Shum, P., Chao, Lu., Lacquet, B.M., Swart, P.L., Spammer, S.J.: EDFA gain flattening using phase-shifted long-period grating. Microw. Optic. Technol. lett. 37(2), 153–157 (2003). https://doi.org/10.1002/mop.10853

    Article  Google Scholar 

  36. Zhukov, A.E., Burdin, V.A., Bourdine, A.V.: Design of silica optical fibers with enlarged core diameter for a few-mode fiber optic links of onboard and industrial multi-gigabit networks. Procedia. Eng. 201, 105–116 (2017). https://doi.org/10.1016/j.proeng.2017.09.675

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Department of Electronics and Communication Engineering of Kalasalingam University, (Kalasalingam Academy of Research and Education), Tamil Nadu, India for permitting to use the computational facilities available in Centre for Research in Signal Processing and VLSI Design which was setup with the support of the Department of Science and Technology (DST), New Delhi, India, under FIST Program in 2013.

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. Sumathy.

Ethics declarations

Conflict of interest

No any potential conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sumathy, R., Muthukumar, A. Wavelength division multiplexing transmission using multimode erbium doped fiber amplifier with elevated refractive index profile. Opt Quant Electron 53, 131 (2021). https://doi.org/10.1007/s11082-021-02774-6

Download citation

Keywords

  • Refractive index profile
  • Linearly polarized modes
  • Multimode erbium doped fiber amplifier
  • Wavelength division multiplexing