Skip to main content
Log in

A quantum chaos study on the localization of light in a resonator-based photonic crystal

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We explore the issue of eigenstate localization in a two-dimensional photonic resonator lattice. In the system of our purpose, by harmonically modulating coupling constants between the resonators an effective magnetic field is imposed on the motion of a photon. From the study on the spectral fluctuantions and participation ration of eigenstates we proceed our aim. We find that the localization properties of the studied system do not change significantly in the region of small phases. In this regime a strong delocalized character is revealed. Conversely, for larger phases a great tendency to localization is seen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aßmann, M., Thewes, J., Fröhlich, D., Bayer, M.: Quantum chaos and breaking of all anti-unitary symmetries in Rydberg excitons. Nat. Mater. 15(7), 741–745 (2016)

    ADS  Google Scholar 

  • Altshuler, B.L., Zharekeshev, I.K., Kotochigova, S.A., Shklovskii, B.I.: Repulsion between energy levels and the metal-insulator transition. Z. Eksp. Teor. Fiz. 94, 343–350 (1988)

    Google Scholar 

  • Anderson, P.W.: Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958)

    ADS  Google Scholar 

  • Aoki, H., Ando, M., Matsumura, H.: Hofstadter butterflies for flat bands. Phys. Rev. B 54, R17296–R17300 (1996)

    ADS  Google Scholar 

  • Behnia, S., Ziaei, J., Khodavirdizadeh, M.: An electric field induced delocalization transition in second-harmonic generation effect. Opt. Quantm Electron. 49, 179–191 (2017)

    Google Scholar 

  • Bohigas, O., Giannoni, M.J., Schmidt, C.: Characterization of chaotic quantum spectra and universality of level fluctuation laws. Phys. Rev. Lett. 52, 1–5 (1984)

    ADS  MathSciNet  MATH  Google Scholar 

  • Chang, C.Z., Zhang, J., Feng, X., Shen, J., Zhang, Z., Guo, M., Li, K., Ou, Y., Wei, P., Wang, L.L., Ji, Z.Q., Feng, Y., Ji, S., Chen, X., Jia, J., Dai, X., Fang, Z., Zhang, S.C., He, K., Wang, Y., Lu, L., Ma, X.C., Xue, Q.K.: Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013)

    ADS  Google Scholar 

  • Cheemalapati, S.V., Winskas, J., Wang, H., Konnaiyan, K., Zhdanov, A., Roth, A., Adapa, S.R., Deonarine, A., Noble, M., Das, T., Gatenby, R., Westerheide, S.D., Jiang, R.H.Y., Pyayt, A.: Subcellular and in-vivo nano-endoscopy. Sci. Rep. 6, 34400–34408 (2016)

    ADS  Google Scholar 

  • Chern, G.W., Chien, C.C., Ventra, M.D.: Dynamically generated flat-band phases in optical kagome lattices. Phys. Rev. A 90, 013609–013615 (2014)

    ADS  Google Scholar 

  • Conti, C., Fratalocchi, A.: Dynamic light diffusion, three-dimensional Anderson localization and lasing in inverted opals. Nat. Phys. 4, 794–798 (2008)

    Google Scholar 

  • Davoyan, A., Engheta, N.: Nonreciprocal rotating power flow within plasmonic nanostructures. Phys. Rev. Lett. 111, 047401–047406 (2013)

    ADS  Google Scholar 

  • Davoyan, A., Engheta, N.: Electrically controlled one-way photon flow in plasmonic nanostructures. Nat. Commun. 5, 5250–5255 (2014)

    ADS  Google Scholar 

  • Evangelou, S.N.: Critical quantum chaos. Physica B 296(1), 62–65 (2001)

    ADS  Google Scholar 

  • Fang, K., Fan, S.: Controlling the flow of light using the inhomogeneous effective gauge field that emerges from dynamic modulation. Phys. Rev. Lett. 111, 203901–203906 (2013)

    ADS  Google Scholar 

  • Fang, K., Yu, Z., Fan, S.: Photonic Aharonov-Bohm effect based on dynamic modulation. Phys. Rev. Lett. 108, 153901–153906 (2012a)

    ADS  Google Scholar 

  • Fang, K., Yu, Z., Fan, S.: Realizing effective magnetic field for photons by controlling the phase of dynamic modulation. Nat. Photon. 6(11), 782–787 (2012b)

    ADS  Google Scholar 

  • Fang, K., Yu, Z., Fan, S.: Experimental demonstration of a photonic Aharonov-Bohm effect at radio frequencies. Phys. Rev. B 87, 060301–060305 (2013a)

    ADS  Google Scholar 

  • Fang, K., Yu, Z., Fan, S.: Photonic de Haas-van Alphen effect. Opt. Express 21(15), 18216–18224 (2013b)

    ADS  Google Scholar 

  • Gentilini, S., Fratalocchi, A., Angelani, L., Ruocco, G., Conti, C.: Ultrashort pulse propagation and the Anderson localization. Opt. Lett. 34, 130–132 (2009)

    ADS  Google Scholar 

  • Goldman, N., Urban, D.F., Bercioux, D.: Topological phases for fermionic cold atoms on the Lieb lattice. Phys. Rev. A 83, 063601–063612 (2011)

    ADS  Google Scholar 

  • Graf, M., Vogl, P.: Electromagnetic fields and dielectric response in empirical tight-binding theory. Phys. Rev. B 51(8), 4940–4949 (1995)

    ADS  Google Scholar 

  • Gubin, A., Santos, L.F.: Quantum chaos: an introduction via chains of interacting spins 1/2. Am. J. Phys. 80, 246–251 (2012)

    ADS  Google Scholar 

  • Haake, F.: Quantum Signatures of Chaos. Springer, Berlin (2010)

    MATH  Google Scholar 

  • Hafezi, M., Demler, E.A., Lukin, M.D., Taylor, J.M.: Robust optical delay lines with topological protection. Nat. Phys. 7, 907–912 (2011)

    Google Scholar 

  • Haldane, F.D.M., Raghu, S.: Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904–013908 (2008)

    ADS  Google Scholar 

  • Hamdouni, H., AbdelMalek, F.: One-way light transmission in compact SOI structures. Opt. Quantum Electron. 48(95), 1–13 (2016)

    Google Scholar 

  • Hsieh, P., Chung, C., McMillan, J.F., Tsai, M., Lu, M., Panoiu, N.C., Wong, C.W.: Photon transport enhanced by transverse Anderson localization in disordered superlattices. Nat. Phys. 11, 268–274 (2015)

    Google Scholar 

  • Ibbotson, L.A., Demetriadou, A., Croxall, S., Hess, O., Baumberg, J.J.: Optical nano-woodpiles: large-area metallic photonic crystals and metamaterials. Sci. Rep. 5, 8313–8318 (2015)

    ADS  Google Scholar 

  • Izrailev, F.M.: Simple models of quantum chaos: spectrum and eigenfunctions. Phys. Rep. 196, 299–392 (1990)

    ADS  MathSciNet  Google Scholar 

  • Klitzing, K.V., Dorda, G., Pepper, M.: New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494–497 (1980)

    ADS  Google Scholar 

  • Koch, J., Houck, A.A., Hur, K.L., Girvin, S.M.: Time-reversal-symmetry breaking in circuit-QED-based photon lattices. Phys. Rev. A 82, 043811–043829 (2010)

    ADS  Google Scholar 

  • Koenderink, A.F., Alù, A., Polman, A.: Nanophotonics: shrinking light-based technology. Science 348, 516–521 (2015)

    ADS  Google Scholar 

  • Lieb, E.H.: Two theorems on the Hubbard model. Phys. Rev. Lett. 62, 1201–1205 (1989)

    ADS  MathSciNet  Google Scholar 

  • Liu, C., DiFalco, A., Molinari, D., Khan, Y., Ooi, B.S., Krauss, T.F., Fratalocchi, A.: Enhanced energy storage in chaotic optical resonators. Nat. Photon. 7, 473–478 (2013)

    ADS  Google Scholar 

  • Liu, C., van der Wel, R.E.C., Rotenberg, N., Kuipers, L., Krauss, T.F., Di Falco, A., Fratalocchi, A.: Triggering extreme events at the nanoscale in photonic seas. Nat. Phys. 11, 358–363 (2015)

    Google Scholar 

  • Maciejko, J., Qi, X.L., Drew, H.D., Zhang, S.C.: Topological quantization in units of the fine structure constant. Phys. Rev. Lett. 105, 166803–166807 (2010)

    ADS  Google Scholar 

  • Mazor, Y., Steinberg, B.Z.: Longitudinal chirality, enhanced nonreciprocity, and nanoscale planar one-way plasmonic guiding. Phys. Rev. B 86, 045120–045125 (2012)

    ADS  Google Scholar 

  • Mazor, Y., Hadad, Y., Steinberg, B.Z.: Planar one-way guiding in periodic particle arrays with asymmetric unit cell and general group-symmetry considerations. Phys. Rev. B 92, 125129–125139 (2015)

    ADS  Google Scholar 

  • Mehta, M.L.: Random Matrices. Academic Press, Boston (1991)

    MATH  Google Scholar 

  • Miles, J.A., Das, D., Simmons, Z.J., Yavuz, D.D.: Localization of atomic excitation beyond the diffraction limit using electromagnetically induced transparency. Phys. Rev. 92, 033838–033848 (2015)

    ADS  Google Scholar 

  • Nandkishore, R., Levitov, L.S., Chubukov, A.V.: Chiral superconductivity from repulsive interactions in doped graphene. Nat. Phys. 8, 158–163 (2012)

    Google Scholar 

  • Onoda, M., Murakami, S., Nagaosa, N.: Hall effect of light. Phys. Rev. Lett. 93, 083901–0833905 (2004)

    ADS  Google Scholar 

  • Pathak, S., Shenoy, V.B., Baskaran, G.: Possible high-temperature superconducting state with a d + id pairing symmetry in doped graphene. Phys. Rev. B 81, 085431–085436 (2010)

    ADS  Google Scholar 

  • Paul, T., Menzel, C., Śmigaj, W., Rockstuhl, C., Lalanne, P., Lederer, F.: Reflection and transmission of light at periodic layered metamaterial films. Phys. Rev. B 84, 115142–115152 (2011)

    ADS  Google Scholar 

  • Pérez-Aguilar, H., Mendoza-Suárez, A., Tututi, E.S., Herrera-Gonzalez, I.F.: Chaotic behavior of a quantum waveguide. Physica B 411, 93–98 (2013)

    ADS  Google Scholar 

  • Saleh, B.E.A., Teich, M.C.: Fundamentals of Photonics. Wiley, New York (1991)

    Google Scholar 

  • Salmanpour, A., Mohammadnejad, S., Bahrami, A.: Photonic crystal logic gates: an overview. Opt. Quantum Electron. 47, 2249–2275 (2015)

    MATH  Google Scholar 

  • Sayrin, C., Junge, C., Mitsch, R., Albrecht, B., O’Shea, D., Schneeweiss, P., Volz, J., Rauschenbeutel, A.: Nanophotonic optical isolator controlled by the internal state of cold atoms. Phys. Rev. X 5, 041036–041045 (2015)

    Google Scholar 

  • Shklovskii, B.I., Shapiro, B., Sears, B.R., Lambrianides, P., Shore, H.B.: Statistics of spectra of disordered systems near the metal-insulator transition. Phys. Rev. B 47, 11487–11491 (1993)

    ADS  Google Scholar 

  • Umucallar, R.O., Carusotto, I.: Artificial gauge field for photons in coupled cavity arrays. Phys. Rev. A 84, 043804–043812 (2011)

    ADS  Google Scholar 

  • Vicencio, R.A., Cantillano, C., Morales-Inostroza, L., Real, B., Mejía-Cortés, C., Weimann, S., Szameit, A., Molina, M.I.: Observation of localized states in Lieb photonic lattices. Phys. Rev. Lett. 114, 245503–245508 (2015)

    ADS  Google Scholar 

  • Zelevinsky, V., Brown, B.A., Frazier, N., Horoi, M.: The nuclear shell model as a testing ground for many-body quantum chaos. Phys. Rep. 276, 85–174 (1996)

    ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Behnia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behnia, S., Ziaei, J. & Khodavirdizadeh, M. A quantum chaos study on the localization of light in a resonator-based photonic crystal. Opt Quant Electron 52, 142 (2020). https://doi.org/10.1007/s11082-020-2248-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-2248-3

Keywords

Navigation