Skip to main content
Log in

Simultaneous effects of pressure, temperature, impurity location, SOI and magnetic field on THG of a pyramid quantum dot

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We have investigated simultaneous effects of pressure, temperature, impurity location, Rashba and Dresselhaus spin–orbit interaction and magnetic field on THG of realized GaAs/Al0.5Ga0.5As pyramid quantum dot with considering the wet layer. For this purpose, we have calculated the energy levels and wave function of one electron that is confined in constant potential, in presence of impurity, magnetic field, Rashba and Dresselhous SOI in various temperatures, pressure and impurity location in effective mass approximation by FEM. In the following, we have presented the effect of magnetic field, Rashba and Dresselhous SOI, temperature, pressure and impurity location on THG in various conditions. Results show that: (1) THG increases by increasing the magnetic field and the distance between the peaks decrease. Also, the peak corresponding to the E21 transition has a blue shift and the peaks corresponding to the E31/2 and E41/3 transitions have a red shift. (2) THG decreases and shifts to higher energies and has a small blue shift by augment of temperature. (3) THG enhances and all of peaks have a red shift by increment of pressure. (4) THG has a minimum around z0 = 4 nm in all magnetic field, temperature and pressure cases. Also, all of peaks have a blue shift by augment of z0 until z0 = 4 nm and then have a red shit by increasing the z0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Bahramiyan, H., Servatkhah, M.: Second and third harmonic generation of a hexagonal pyramid quantum dot: impurity position effect. Opt. Quant. Electron. 47, 2747–2758 (2015)

    Article  Google Scholar 

  • Baskoutas, S., Paspalakis, E., Terzis, A.F.: Electronic structure and nonlinear optical rectification in a quantum dot: effects of impurities and external electric field. J. Phys. Condens. Matter. 19, 395024–395036 (2007)

    Article  Google Scholar 

  • Boyd, R.W.: Nonlinear Optics, 2nd edn. Academic Press (2003)

  • Bychkov, Y.A., Rashba, E.I.: Oscillatory effects and the magnetic susceptibility of carriers in inversion layers. J. Phys. C 17, 6039–6045 (1984)

    Article  ADS  Google Scholar 

  • Davies, J.H.: The Physics of Low-Dimensional Semiconductors: An Introduction. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  • Dresselhaus, G.: Spin–orbit coupling effects in zinc blende structures. Phys. Rev. 100, 580–586 (1955)

    Article  ADS  Google Scholar 

  • Dyakonov, M.I., Kachorovskii, V.Y.: Relaxation de spin d’électrons bidimensionnels dans les semiconducteurs sans centre d’inversion. Fiz. Tekh. Poluprovodn. (S-Peterburg) 20, 178–181 (1986)

    Google Scholar 

  • Gharaati, A.: Lande g-factor in semiconductor cylinder quantum dots under magnetic fields and spin-orbit interaction. Solid State Commun. 258, 17–20 (2017)

    Article  ADS  Google Scholar 

  • Hassanabadi, H., Rahimov, H., Lu, L., Wang, C.: Nonlinear optical properties of a three-electron quantum dot with account of the Rashba spin–orbit interaction. J. Lumin. 132, 1095–1100 (2012)

    Article  Google Scholar 

  • Hirsch, J.E.: Spin hall effect. Phys. Rev. Lett. 83, 1834–1837 (1999)

    Article  ADS  Google Scholar 

  • Karaaslan, Y., Gisi, B., Sakiroglu, S., Kasapoglu, E., Sari, H., Sokmen, I.: Rashba spin-orbit coupling effects on the optical properties of double quantum wire under magnetic field. Superlattices Microstruct. 93, 32–39 (2016)

    Article  ADS  Google Scholar 

  • Karabulut, I., Safak, H., Tomak, M.: Excitonic effects on the nonlinear optical properties of small quantum dots. J. Phys. D Appl. Phys. 41, 155104–155111 (2008)

    Article  ADS  Google Scholar 

  • Karimi, M.J., Rezaei, G., Nazari, M.: Linear and nonlinear optical properties of multilayered spherical quantum dots: effects of geometrical size, hydrogenic impurity, hydrostatic pressure and temperature. J. Lumin. 145, 555–560 (2014)

    Article  Google Scholar 

  • Khordad, R.: Spin-orbit interaction in a quantum pseudodot: pressure effect. J. Comput. Electron. 13, 383–393 (2014)

    Article  Google Scholar 

  • Khordad, R.: Bound polaron in a quantum pseudodot under Rashba effect. Physica E 69, 249–252 (2015)

    Article  ADS  Google Scholar 

  • Khordad, R.: Optical properties of wedge-shaped quantum dots under Rashba spin–orbit interaction. Int. J. Mod. Phys. B 31, 1750055–1750065 (2017)

    Article  ADS  Google Scholar 

  • Khordad, R., Bahramiyan, H.: Electron-phonon interaction effect on the energy levels and diamagnetic susceptibility of quantum wires: parallelogram and triangle cross section. J. Appl. Phys. 115, 124314–124321 (2014a)

    Article  ADS  Google Scholar 

  • Khordad, R., Bahramiyan, H.: Electronic and optical properties of a lens shaped quantum dot under magnetic field: second and third-harmonic generation. Commun. Theor. Phys. 62, 283–289 (2014b)

    Article  ADS  MathSciNet  Google Scholar 

  • Khordad, R., Bahramiyan, H.: Effect of cross sectional-shape on electronic states in quantum wires with and without impurity: Arnoldi algorithm. Superlattices Microstruct. 88, 651–661 (2015)

    Article  ADS  Google Scholar 

  • Khordad, R., Mirhosseini, B., Bahramiyan, H.: Effect of electron–phonon interaction on the thirdharmonic generation in a quantum pseudodot. Opt. Quant. Electron. 48, 122–133 (2016)

    Article  Google Scholar 

  • Knap, W., Skierbiszewski, C., Zduniak, A., Litwin-Staszewska, E., Bertho, D., Kobbi, F., Robert, J.L., Pikus, G.E., Pikus, F.G., Iordanskii, S.V., Mosser, V., Zekentes, K., Lyanda-Geller, YuB: Weak antilocalization and spin precession in quantum wells. Phys. Rev. B 53, 3912–3924 (1996)

    Article  ADS  Google Scholar 

  • Li, B., Guo, K.X., Liu, Z.L., Zheng, Y.B.: Nonlinear optical rectification in parabolic quantum dots in the presence of electric and magnetic fields. Phys. Lett. A 372, 1337–1340 (2008)

    Article  ADS  Google Scholar 

  • Miller, J.B., Zumbuhl, D.M., Marcus, C.M., Lyanda-Geller, Y.B., Goldhaber-Gordon, D., Campman, K., Gossard, A.C.: Gate-controlled spin–orbit quantum interference effects in lateral transport. Phys. Rev. Lett. 90, 76807–76810 (2003)

    Article  ADS  Google Scholar 

  • Mokhtari, P., Rezaei, G., Zamani, A.: Rashba and Dresselhaus spin–orbit interactions effects on electronic features of a two dimensional elliptic quantum dot. Superlattices Microstruct. 106, 1–7 (2017)

    Article  ADS  Google Scholar 

  • Okada, K.: A theory of dielectric fluid films between nanostructures. Int. J. Eng. Sci. 112, 32–41 (2017)

    Article  MathSciNet  Google Scholar 

  • Rashba, E.I.: Properties of semiconductors with an extremum loop.1. Cyclotron and combinational resonance in a magnetic field perpendicular to the plane of the loop. 2. Sov. Phys. Solid State Phys. 2, 1109–1122 (1960a)

    Google Scholar 

  • Rashba, E.I.: Properties of semiconductors with an extremum loop.1. Cyclotron and combinational resonance in a magnetic field perpendicular to the plane of the loop. Fiz. Tverd. Tela (Leningrad) 2, 1224–1238 (1960b)

    Google Scholar 

  • Rezaei, G., Vaseghi, B., Khordad, R., Azadi Kenary, H.: Optical rectification coefficient of a two-dimensional quantum pseudodot system. Physica E 43, 1853–1856 (2011)

    Article  ADS  Google Scholar 

  • Shakouri, Kh, Szafran, B., Esmaeilzadeh, M., Peeters, F.M.: Effective spin-orbit interaction Hamiltonian for quasi-one-dimensional quantum rings. Phys. Rev. B 85, 165314–165321 (2012)

    Article  ADS  Google Scholar 

  • Sheng, F.J., Zheng, L.: Spin–orbit splitting in semiconductor quantum dots with a two-dimensional ring model. Chin. Phys. Lett. 26, 080305–080308 (2009)

    Article  Google Scholar 

  • Sousa, R.D., Das Sarma, S.: Theory of nuclear-induced spectral diffusion: spin decoherence of phosphorus donors in Si and GaAs quantum dots. Phys. Rev B 68, 155330–155342 (2003)

    Article  ADS  Google Scholar 

  • Wierzbicki, M.: Thermoelectric properties of magnetic configurations of graphene-like nanoribbons in the presence of Rashba and spin–orbit interactions. Physica E 87, 220–227 (2017)

    Article  ADS  Google Scholar 

  • Wolf, S.A., Chtchelkanova, A.Y., Treger, D.M.: Spintronics—a retrospective and perspective. IBM J. Res. Dev. 50, 101–110 (2006)

    Article  Google Scholar 

  • Zamani, A., Azargoshasb, T., Niknam, E.: Second and third harmonic generations of a quantum ring with Rashba and Dresselhaus spin-orbit couplings: temperature and Zeeman effects. Physica B 523, 85–91 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgement

This work is partially supported by the AI University Research Centre (AI-URC) through XJTLU Key Programme Special Fund (KSF-P-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Bahramiyan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avazzadeh, Z., Bahramiyan, H. Simultaneous effects of pressure, temperature, impurity location, SOI and magnetic field on THG of a pyramid quantum dot. Opt Quant Electron 52, 179 (2020). https://doi.org/10.1007/s11082-020-2230-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-2230-0

Keywords

Navigation