Abstract
A 2D photonic crystal (PC) sensor based on optical filter has been designed using a PC ring resonator (PCRR). The sensor used a 2D-PCRR triangular lattice with circular silicon rods placed in air background. We employed a ring resonator with Z-shaped core in the investigated structure, which is designed as temperature sensor and investigated theoretically along with high quality factor, transmission and sensitivity parameters. For sensing analysis, the 2D finite-difference time-domain method and the plane-wave expansion approach have been applied. A temperature variation from 0 to 20 °C causes a defect mode shifting and the channel filter wavelength shift was used as sensing mechanism. Using the number of the functionalized rods N = 36 at the temperature of 5 °C, the quality factor, the temperature sensitivity, the refractive index sensitivity and the detection limit of the studied structure were found to be 57,104, 96 pm/°C, 400 nm/RIU and 6.16 × 10–6 RIU, respectively.
Similar content being viewed by others
References
Arunkumar, R., Suganya, T., Robinson, S.: Design and analysis of photonic crystal elliptical ring resonator based pressure sensor. Int. J. Photonic Opt. Technol. 3(1), 30–33 (2017)
Benisty, H., Weisbuch, C., Labilloy, D., Rattier, M., Smith, C.J.M., Krauss, T.F., De la Rue, R.M., Houdre, R., Oesterle, U., Jouanin, C., Cassagne, D.: Optical and confinement properties of two-dimensional photonic crystals. J. Lightwave Technol. 17, 2063–2077 (1999)
Benmerkhi, A., Bouchemat, M., Bouchemat, T.: Computational study of photonic crystal resonator for biosensor application. De Gruyter Freq. 135(9–10), 287–351 (2019)
Boruah, J., Kalra, Y., Sinha, R.K.: Demonstration of temperature resilient properties of 2D silicon carbide photonic crystal structures and cavity modes. Optik 125(5), 1663–1666 (2014)
Chen, Y.-H., Shi, W.-H., Feng, L., Xu, X.-Y., Shang-Guan, M.-Y.: Study on simultaneous sensing of gas concentration and temperature in one-dimensional photonic crystal. Superlattices Microstruct. 131, 53–58 (2019)
Chopra, H., Kaler, R.S., Painam, B.: Photonic crystal waveguide based biosensor for detection of diseases. J. Nanophotonics 10(3), 036011 (2016)
Dinesh Kumar, V., Srinivas, T., Selvarajan, A.: Investigation of ring resonators in photonic crystal circuits. Photonics Nanostruct. 2, 199–206 (2004)
Dominguez-Juarez, J.L., Kozyreff, G., Martorell, J.: Whispering gallery microresonators for second harmonic light generation from a low number of small molecule. Nat. Commun. 2, 1–8 (2011)
Dong, P., Liu, X., Sethumadhavan, C., Buhl, L.L., Aroca, R., Baeyens, Y., Chen, Y..: 224-Gb/s PDM-16-QAM modulator and receiver based on silicon photonic integrated circuits. In: Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013 (Optical Society of America, 2013), paper PDP5C.6 (2013)
Dong, P., Chen, Y.K., Duan, G.-H., Neilson, D.T.: Silicon photonic devices and integrated circuits. Nanophotonics De Gruyter 3(4–5), 215–228 (2014)
Dorfner, D.F., Hürlimann, T., Zabel, T., Frandsen, L.H., Abstreiter, G.: Silicon photonic crystal nanostructures for refractive index sensing. Appl. Phys. Lett. 93(18), 181103 (2008)
Duan, G., Fedeli, J., Keyvaninia, S., Thomson, D.: 10 Gb/s integrated tunable hybrid III-V/Si laser and silicon Mach–Zehnder modulator. In European Conference and Exhibition on Optical Communication (Optical Society of America, 2012), paper Tu.4.E.2 (2012)
Dyogtyev, A.V., Sukhoivanov, I.A., De La Rue, R.M.: Photonic band-gap maps for different two dimensionally periodic photonic crystal structures. J. Appl. Phys. 107, 013108 (2010)
Fu, H.-W., Zhao, H., Qiao, X.-G., Li, Y., Zhao, D.-Z., Yong, Z.: Study on a novel photonic crystal temperature sensor. Optoelectron. Lett. 7(6), 419–422 (2011)
Ghaffari, A., Monifi, F., Djavid, M., Abrishamian, M.S.: Analysis of photonic crystal power splitters with different configurations. J. Appl. Sci. 8, 1416–1425 (2008)
Ghosh, G.: Temperature dispersion of refractive indices in crystalline and amorphous silicon. Appl. Phys. Lett. 66, 3570–3572 (1995)
Goyal, A.K., Pal, S.: Design and simulation of high sensitive photonic crystal waveguide sensor. Optik 126(2), 240–243 (2015)
Hocini, A., Harhouz, A.: Modeling and analysis of the temperature sensitivity in twodimensional photonic crystal microcavity. J. Nanophotonics 10(1), 016007 (2016)
Hsu, T.-R.: MEMS and Microsystems Design and Manufacture. McGraw-Hill Inc., New York (2001)
Jellison, G.E., Burke, H.H.: The temperature dependence of the refractive index of silicon at elevated temperatures at several laser wavelengths. J. Appl. Phys. 60, 841–843 (1986)
Jindal, S., Sobti, S., Kumar, M., Sharma, S., Pal, M.K.: Nanocavity coupled photonic crystal waveguide as highly sensitive platform for cancer detection. IEEE Sens. J 16(10), 3705–3710 (2016)
Klimov, N., Purdy, T., Ahmedb, Z.: Towards replacing resistance thermometry with photonic thermometry. Sens. Actuators A 269, 308–312 (2018)
Larrion, B., Hernaez, M., Arregui, F.J., Goicoechea, J., Bravo, J., Matıas, I.R.: Photonic crystal fiber temperature sensor based on quantum dot nanocoatings. J. Sens. (2009). https://doi.org/10.1155/2009/932471
Leonard, S.W., Mondia, J.P., van Driel, H.M., Toader, O., John, S., Busch, K., Birner, A., Gösele, U., Lehman, V.: Tunable two-dimensional photonic crystals using liquid-crystal infiltration. Phys. Rev. B 61, R2389–R2392 (2000)
Liu, Z., Fujun Sun, F., Wang, C., Tian, H.: Side-coupled nanoscale photonic crystal structure with high-Q and high-stability for simultaneous refractive index and temperature sensing. J. Mod. Opt. 66(12), 1339–1346 (2019)
Loncar, M., Scherer, A.: Microfabricated optical cavities and pho-tonic crystals. In: Vahala, K. (ed.) Optical Microcavities. WorldScientific Publishing, Singapore (2004)
Mallika, C.S., Bahaddur, I., Srikanth, P.C., Sharan, P.: Photonic crystal ring resonator structure for temperature measurement. Optik 126(20), 2252–2255 (2015)
Mekis, A., Chen, J.C., Kurland, I., Fan, S., Villeneuve, P.R., Joannopoulos, J.D.: High transmission through sharp bends in photonic crystal waveguides. Phys. Rev. Lett. 77, 3787–3790 (1996)
Nikoufard, M., Alamouti, M.K., Adel, A.: Ultra-compact photonic crystal based water temperature sensor. Photonics Sens. 6(3), 274–278 (2016)
Olyaee, S., Bahabady, A.M.: Design and optimization of diamond-shaped biosensor using photonic crystal nano-ring resonator. Optik 126(20), 2560–2564 (2015)
Olyaee, S., Mohebzadeh-Bahabady, A.: Designing a novel photonic crystal nano-ring resonator for biosensor application. Opt. Quantum Electron. 47(7), 1881–1888 (2015)
Qian, X., Zhao, Y., Zhang, Y., Wang, Q.: Theoretical research of gas sensing method based on photonic crystal cavity and fiber loop ring-down technique. Sens. Actuators B Chem 228(2), 665–672 (2016)
Radhouene, M., Chipa, M.K., Najjar, M., Robinson, S., Suthar, B.: Novel design of ring resonator based temperature sensor using photonics technology. Photonic Sens. 7(4), 311–316 (2017)
Rajasekar, R., Robinson, S.: Nano-pressure and temperature sensor based on hexagonal photonic crystal ring resonator. Plasmonics 14, 3–15 (2018)
Rakhshani, M.R., et al.: Tunable channel drop filter using hexagonal photonic crystal ring resonators. Telkomnika Indones. J. Electr. Eng. 11(1), 513–516 (2013)
Rezaee, S., Zavvari, M.: A novel optical filter based on H-shape photonic crystal ring resonators. Opt. Int. J. Light Electron Opt. 126(20), 2535–2538 (2015)
Satpathy, S., Zhang, Z., Salehpour, M.: R: theory of photon bands in three-dimensional periodic dielectric structures. Phys. Rev. Lett. 64, 1239–1242 (1990)
Shanthi, K.V., Robinson, S.: Two-dimensional photonic crystal based sensor for pressure sensing. Photonic Sens. 4(3), 248–253 (2014)
Swain, K.P., Palai, G.: Estimation of human-hemoglobin using honeycomb structure: an application of photonic crystal. Optik 127(6), 3333–3336 (2016)
Taflove, A., Hegnese, S.C.: Computational Electrodynamics: The Finite-Difference Time-Domain Method. Artech House, Boston (1998)
The FDTD simulations were carried out with Fullwave commercial software by RSoft Design Group. version 6.1, license 16847214
Tinker, M.T., Lee, J.B.: Thermal and optical simulation of a photonic crystal light modulator based on the thermo-optic shift of the cut-off frequency. Opt. Express 13(18), 7174–7188 (2005)
Wang, Q., Cui, Y., Zhang, J., Yan, C., Zhang, L.: The position independence of heterostructure coupled waveguides in photonic-crystal switch. Optik Opt. 121(8), 684–688 (2010)
White, I.M., Fan, X.: On the performance quantification of resonant refractive index sensors. Opt. Express 16, 1020–1028 (2008)
Yamada, S., Song, B.-S., Asano, T., Noda, S.: Experimental investigation of thermo-optic effects in SiC and Si photonic crystal nanocavities. Opt. Lett. 36(20), 3981–3983 (2011)
Zegadi, R., Ziet, L., Zegadi, A.: Design of high sensitive temperature sensor based on two-dimensional photonic crystal. Silicon 7, 1–7 (2019)
Zhang, L., Lou, J., Tong, L.: Micro/nanofiber optical sensors. Photonic Sens. 1(1), 31–42 (2011)
Zhao, Y., Zhang, Y., Ri-Qing, L.V., Li, J.: Electric field sensor based on photonic crystal cavity with liquid crystal infiltration. J. Lightwave Technol. 35(16), 3440–3446 (2017)
Acknowledgements
The authors are very grateful to professor A. Bellel for his valuable help.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Benmerkhi, A., Bounouioua, A., Bouchemat, M. et al. Analysis of a photonic crystal temperature sensor based on Z-shaped ring resonator. Opt Quant Electron 53, 41 (2021). https://doi.org/10.1007/s11082-020-02730-w
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11082-020-02730-w