Skip to main content
Log in

Analysis of a photonic crystal temperature sensor based on Z-shaped ring resonator

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A 2D photonic crystal (PC) sensor based on optical filter has been designed using a PC ring resonator (PCRR). The sensor used a 2D-PCRR triangular lattice with circular silicon rods placed in air background. We employed a ring resonator with Z-shaped core in the investigated structure, which is designed as temperature sensor and investigated theoretically along with high quality factor, transmission and sensitivity parameters. For sensing analysis, the 2D finite-difference time-domain method and the plane-wave expansion approach have been applied. A temperature variation from 0 to 20 °C causes a defect mode shifting and the channel filter wavelength shift was used as sensing mechanism. Using the number of the functionalized rods N = 36 at the temperature of 5 °C, the quality factor, the temperature sensitivity, the refractive index sensitivity and the detection limit of the studied structure were found to be 57,104, 96 pm/°C, 400 nm/RIU and 6.16 × 10–6 RIU, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arunkumar, R., Suganya, T., Robinson, S.: Design and analysis of photonic crystal elliptical ring resonator based pressure sensor. Int. J. Photonic Opt. Technol. 3(1), 30–33 (2017)

    Google Scholar 

  • Benisty, H., Weisbuch, C., Labilloy, D., Rattier, M., Smith, C.J.M., Krauss, T.F., De la Rue, R.M., Houdre, R., Oesterle, U., Jouanin, C., Cassagne, D.: Optical and confinement properties of two-dimensional photonic crystals. J. Lightwave Technol. 17, 2063–2077 (1999)

    ADS  Google Scholar 

  • Benmerkhi, A., Bouchemat, M., Bouchemat, T.: Computational study of photonic crystal resonator for biosensor application. De Gruyter Freq. 135(9–10), 287–351 (2019)

    Google Scholar 

  • Boruah, J., Kalra, Y., Sinha, R.K.: Demonstration of temperature resilient properties of 2D silicon carbide photonic crystal structures and cavity modes. Optik 125(5), 1663–1666 (2014)

    ADS  Google Scholar 

  • Chen, Y.-H., Shi, W.-H., Feng, L., Xu, X.-Y., Shang-Guan, M.-Y.: Study on simultaneous sensing of gas concentration and temperature in one-dimensional photonic crystal. Superlattices Microstruct. 131, 53–58 (2019)

    ADS  Google Scholar 

  • Chopra, H., Kaler, R.S., Painam, B.: Photonic crystal waveguide based biosensor for detection of diseases. J. Nanophotonics 10(3), 036011 (2016)

    ADS  Google Scholar 

  • Dinesh Kumar, V., Srinivas, T., Selvarajan, A.: Investigation of ring resonators in photonic crystal circuits. Photonics Nanostruct. 2, 199–206 (2004)

    ADS  Google Scholar 

  • Dominguez-Juarez, J.L., Kozyreff, G., Martorell, J.: Whispering gallery microresonators for second harmonic light generation from a low number of small molecule. Nat. Commun. 2, 1–8 (2011)

    Google Scholar 

  • Dong, P., Liu, X., Sethumadhavan, C., Buhl, L.L., Aroca, R., Baeyens, Y., Chen, Y..: 224-Gb/s PDM-16-QAM modulator and receiver based on silicon photonic integrated circuits. In: Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013 (Optical Society of America, 2013), paper PDP5C.6 (2013)

  • Dong, P., Chen, Y.K., Duan, G.-H., Neilson, D.T.: Silicon photonic devices and integrated circuits. Nanophotonics De Gruyter 3(4–5), 215–228 (2014)

    Google Scholar 

  • Dorfner, D.F., Hürlimann, T., Zabel, T., Frandsen, L.H., Abstreiter, G.: Silicon photonic crystal nanostructures for refractive index sensing. Appl. Phys. Lett. 93(18), 181103 (2008)

    ADS  Google Scholar 

  • Duan, G., Fedeli, J., Keyvaninia, S., Thomson, D.: 10 Gb/s integrated tunable hybrid III-V/Si laser and silicon Mach–Zehnder modulator. In European Conference and Exhibition on Optical Communication (Optical Society of America, 2012), paper Tu.4.E.2 (2012)

  • Dyogtyev, A.V., Sukhoivanov, I.A., De La Rue, R.M.: Photonic band-gap maps for different two dimensionally periodic photonic crystal structures. J. Appl. Phys. 107, 013108 (2010)

    ADS  Google Scholar 

  • Fu, H.-W., Zhao, H., Qiao, X.-G., Li, Y., Zhao, D.-Z., Yong, Z.: Study on a novel photonic crystal temperature sensor. Optoelectron. Lett. 7(6), 419–422 (2011)

    ADS  Google Scholar 

  • Ghaffari, A., Monifi, F., Djavid, M., Abrishamian, M.S.: Analysis of photonic crystal power splitters with different configurations. J. Appl. Sci. 8, 1416–1425 (2008)

    ADS  Google Scholar 

  • Ghosh, G.: Temperature dispersion of refractive indices in crystalline and amorphous silicon. Appl. Phys. Lett. 66, 3570–3572 (1995)

    ADS  Google Scholar 

  • Goyal, A.K., Pal, S.: Design and simulation of high sensitive photonic crystal waveguide sensor. Optik 126(2), 240–243 (2015)

    ADS  Google Scholar 

  • Hocini, A., Harhouz, A.: Modeling and analysis of the temperature sensitivity in twodimensional photonic crystal microcavity. J. Nanophotonics 10(1), 016007 (2016)

    ADS  Google Scholar 

  • Hsu, T.-R.: MEMS and Microsystems Design and Manufacture. McGraw-Hill Inc., New York (2001)

    Google Scholar 

  • Jellison, G.E., Burke, H.H.: The temperature dependence of the refractive index of silicon at elevated temperatures at several laser wavelengths. J. Appl. Phys. 60, 841–843 (1986)

    ADS  Google Scholar 

  • Jindal, S., Sobti, S., Kumar, M., Sharma, S., Pal, M.K.: Nanocavity coupled photonic crystal waveguide as highly sensitive platform for cancer detection. IEEE Sens. J 16(10), 3705–3710 (2016)

    ADS  Google Scholar 

  • Klimov, N., Purdy, T., Ahmedb, Z.: Towards replacing resistance thermometry with photonic thermometry. Sens. Actuators A 269, 308–312 (2018)

    Google Scholar 

  • Larrion, B., Hernaez, M., Arregui, F.J., Goicoechea, J., Bravo, J., Matıas, I.R.: Photonic crystal fiber temperature sensor based on quantum dot nanocoatings. J. Sens. (2009). https://doi.org/10.1155/2009/932471

    Article  Google Scholar 

  • Leonard, S.W., Mondia, J.P., van Driel, H.M., Toader, O., John, S., Busch, K., Birner, A., Gösele, U., Lehman, V.: Tunable two-dimensional photonic crystals using liquid-crystal infiltration. Phys. Rev. B 61, R2389–R2392 (2000)

    ADS  Google Scholar 

  • Liu, Z., Fujun Sun, F., Wang, C., Tian, H.: Side-coupled nanoscale photonic crystal structure with high-Q and high-stability for simultaneous refractive index and temperature sensing. J. Mod. Opt. 66(12), 1339–1346 (2019)

    ADS  Google Scholar 

  • Loncar, M., Scherer, A.: Microfabricated optical cavities and pho-tonic crystals. In: Vahala, K. (ed.) Optical Microcavities. WorldScientific Publishing, Singapore (2004)

    Google Scholar 

  • Mallika, C.S., Bahaddur, I., Srikanth, P.C., Sharan, P.: Photonic crystal ring resonator structure for temperature measurement. Optik 126(20), 2252–2255 (2015)

    ADS  Google Scholar 

  • Mekis, A., Chen, J.C., Kurland, I., Fan, S., Villeneuve, P.R., Joannopoulos, J.D.: High transmission through sharp bends in photonic crystal waveguides. Phys. Rev. Lett. 77, 3787–3790 (1996)

    ADS  Google Scholar 

  • Nikoufard, M., Alamouti, M.K., Adel, A.: Ultra-compact photonic crystal based water temperature sensor. Photonics Sens. 6(3), 274–278 (2016)

    ADS  Google Scholar 

  • Olyaee, S., Bahabady, A.M.: Design and optimization of diamond-shaped biosensor using photonic crystal nano-ring resonator. Optik 126(20), 2560–2564 (2015)

    ADS  Google Scholar 

  • Olyaee, S., Mohebzadeh-Bahabady, A.: Designing a novel photonic crystal nano-ring resonator for biosensor application. Opt. Quantum Electron. 47(7), 1881–1888 (2015)

    Google Scholar 

  • Qian, X., Zhao, Y., Zhang, Y., Wang, Q.: Theoretical research of gas sensing method based on photonic crystal cavity and fiber loop ring-down technique. Sens. Actuators B Chem 228(2), 665–672 (2016)

    Google Scholar 

  • Radhouene, M., Chipa, M.K., Najjar, M., Robinson, S., Suthar, B.: Novel design of ring resonator based temperature sensor using photonics technology. Photonic Sens. 7(4), 311–316 (2017)

    ADS  Google Scholar 

  • Rajasekar, R., Robinson, S.: Nano-pressure and temperature sensor based on hexagonal photonic crystal ring resonator. Plasmonics 14, 3–15 (2018)

    Google Scholar 

  • Rakhshani, M.R., et al.: Tunable channel drop filter using hexagonal photonic crystal ring resonators. Telkomnika Indones. J. Electr. Eng. 11(1), 513–516 (2013)

    Google Scholar 

  • Rezaee, S., Zavvari, M.: A novel optical filter based on H-shape photonic crystal ring resonators. Opt. Int. J. Light Electron Opt. 126(20), 2535–2538 (2015)

    Google Scholar 

  • Satpathy, S., Zhang, Z., Salehpour, M.: R: theory of photon bands in three-dimensional periodic dielectric structures. Phys. Rev. Lett. 64, 1239–1242 (1990)

    ADS  Google Scholar 

  • Shanthi, K.V., Robinson, S.: Two-dimensional photonic crystal based sensor for pressure sensing. Photonic Sens. 4(3), 248–253 (2014)

    ADS  Google Scholar 

  • Swain, K.P., Palai, G.: Estimation of human-hemoglobin using honeycomb structure: an application of photonic crystal. Optik 127(6), 3333–3336 (2016)

    ADS  Google Scholar 

  • Taflove, A., Hegnese, S.C.: Computational Electrodynamics: The Finite-Difference Time-Domain Method. Artech House, Boston (1998)

    Google Scholar 

  • The FDTD simulations were carried out with Fullwave commercial software by RSoft Design Group. version 6.1, license 16847214

  • Tinker, M.T., Lee, J.B.: Thermal and optical simulation of a photonic crystal light modulator based on the thermo-optic shift of the cut-off frequency. Opt. Express 13(18), 7174–7188 (2005)

    ADS  Google Scholar 

  • Wang, Q., Cui, Y., Zhang, J., Yan, C., Zhang, L.: The position independence of heterostructure coupled waveguides in photonic-crystal switch. Optik Opt. 121(8), 684–688 (2010)

    ADS  Google Scholar 

  • White, I.M., Fan, X.: On the performance quantification of resonant refractive index sensors. Opt. Express 16, 1020–1028 (2008)

    ADS  Google Scholar 

  • Yamada, S., Song, B.-S., Asano, T., Noda, S.: Experimental investigation of thermo-optic effects in SiC and Si photonic crystal nanocavities. Opt. Lett. 36(20), 3981–3983 (2011)

    ADS  Google Scholar 

  • Zegadi, R., Ziet, L., Zegadi, A.: Design of high sensitive temperature sensor based on two-dimensional photonic crystal. Silicon 7, 1–7 (2019)

    Google Scholar 

  • Zhang, L., Lou, J., Tong, L.: Micro/nanofiber optical sensors. Photonic Sens. 1(1), 31–42 (2011)

    ADS  Google Scholar 

  • Zhao, Y., Zhang, Y., Ri-Qing, L.V., Li, J.: Electric field sensor based on photonic crystal cavity with liquid crystal infiltration. J. Lightwave Technol. 35(16), 3440–3446 (2017)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to professor A. Bellel for his valuable help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahlem Benmerkhi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benmerkhi, A., Bounouioua, A., Bouchemat, M. et al. Analysis of a photonic crystal temperature sensor based on Z-shaped ring resonator. Opt Quant Electron 53, 41 (2021). https://doi.org/10.1007/s11082-020-02730-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02730-w

Keywords

Navigation