Skip to main content
Log in

Dispersion and light loss reduction in photonic crystal fibers using nanoparticles optimization

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The dispersion of optical fiber can damage optical information, thus limiting data transfer speed and transmission distances. In this paper, a new structure is presented by applying metal nanoparticles for photonic crystal fibers (PCF) so that minimizes dispersion and optical loss. The proposed PCF uses circular and elliptical shape nanoparticles, then their number and location is optimized by PSO algorithm. Applying metal nanoparticles in PCF substrate causes increases the conductivity and increases light excitation, which increases light absorption and decreasing dispersion. By changing the shape, location, and type of nanoparticles, a structure with minimal dispersion and light loss is provided. In this paper, we applied three elliptical and three circular nanoparticles using the PSO results. The hexagonal PCF is designed with air grids and radius of 5.8 µm, and then circular and elliptical gold particles are used instead of air holes. Simulation results show that the loss is 7e−4 dB/cm at wavelengths between 1.3 and 1.65 µm and the dispersion is obtained less than 0.3 ps/nm/km. The light loss and dispersion are reduced compared to other related studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adams, M.J., Henning, I.D. (1990) Optical fibers and sources for communication. In: Updates in applied physics and electrical technology book series (UAPE)

  • Ahmed, F., Roy, S., Ahmed, K., Paul, B.K., Bahar, A.N.: A novel star shape photonic crystal fiber for low loss terahertz pulse propagation. Nano Commun. Netw. 19, 26–32 (2019)

    Article  Google Scholar 

  • Amoah, A.K., Akowuah, E.K., Nukpezah, G., Haxha, S., Ademgil, H.: A theoretical investigation of a photonic crystal fibre with ultra-flattened chromatic dispersion with three zero crossing dispersion wavelengths. Opt. Fiber Technol. 53, 102032 (2019)

    Article  Google Scholar 

  • Begum, F., Namihira, Y., Razzak, S.M.A., Kaijage, S.F., Hai, N.H., Kinjo, T., Miayagi, K., Zou, N.: Novel broadband dispersion compensating photonic crystal fibers: applications in high speed transmission. Opt. Laser Technol. 41(6), 679–686 (2009)

    Article  ADS  Google Scholar 

  • Chugh, S., Gulistan, A., Ghosh, S., Rahman, B.M.A.: Machine learning approach for computing optical properties of a photonic crystal fiber. Opt. Express 27(25), 36414–36425 (2019)

    Article  ADS  Google Scholar 

  • da Silva, J.P., Bezerra, D.S., Rodriguez-Esquerre, V.F., da Fonseca, I.E., Hernandez-Figueroa, H.E.: Ge-doped defect-core microstructured fiber design by genetic algorithm for residual dispersion compensation. IEEE Photonics Technol. Lett. 22(18), 1337–1339 (2010)

    Article  ADS  Google Scholar 

  • Fiaboe, K.F., Gaurav, P., Pandey, N.K.: Ultra low confinement loss Photonic crystal fiber with flattened dispersion. In: Third International Conference on Inventive Systems and Control (ICISC) (2019)

  • Hasan, M.I., Razzak, S.A., Habib, M.S.: Design and characterization of highly birefringent residual dispersion compensating photonic crystal fiber. J. Lightwave Technol. 32(23), 3976–3982 (2014)

    Article  ADS  Google Scholar 

  • Hasan, M.R., Anower, M.S., Hasan, M.I.: A polarization maintaining single mode photonic crystal fiber for residual dispersion compensation. IEEE Photon. Technol. Lett. 28(16), 1782–1785 (2016)

    Article  ADS  Google Scholar 

  • Islam, M.A., Alam, M.S.: Design of a polarization-maintaining equiangular spiral photonic crystal fiber for residual dispersion compensation over E+ S + C + L + U wavelength bands. IEEE Photonics Technol. Lett. 24(11), 930–932 (2012a)

    Article  ADS  Google Scholar 

  • Islam, M.A., Alam, M.S.: Design optimization of equiangular spiral photonic crystal fiber for large negative flat dispersion and high birefringence. J. Lightwave Technol. 30(22), 3545–3551 (2012b)

    Article  ADS  Google Scholar 

  • Khoobjou, E., Khalesi, H., Ghods, V.: An optimal design for decreasing dispersion in photonic crystal fiber. J. Electr. Eng. 15(6), 2691–2698 (2020)

    Article  Google Scholar 

  • Krishna, G.D., Mahadevan Pillai, V.P., Gopchandran, K.G.: Design of low dispersion and low loss photonic crystal fiber: defected core circular-octagon hybrid lattices. Opt. Fiber Technol. 51, 17–24 (2019)

    Article  ADS  Google Scholar 

  • Mahmud, R.R., Razzak, S.M.A., Hasan, M.I., Hasanuzzaman, G.K.M.: Ultraflattened high negative chromatic dispersion over O + E + S + C + L + U bands of a microstructured optical fiber. Opt. Eng. 54(9), 0971051–0971057 (2015)

    Article  Google Scholar 

  • Maji, P.S., Chaudhuri, P.R.: Designing broad band dispersion compensation with square lattice PCF and applications to ASE suppression with ultra negative dispersion. Optik 127(5), 2603–2607 (2016)

    Article  ADS  Google Scholar 

  • Maji, P.S., Roy Chaudhuri, P.: A new design for all-normal near zero dispersion photonic crystal fiber with selective liquid infiltration for broadband supercontinuum generation at 1.55 μm. J. Photon. 2014, 728592 (2014)

    Google Scholar 

  • Matsui, T., Sakamoto, T., Tsujikawa, K., Tomita, S., Tsubokawa, M.: Single-mode photonic crystal fiber design with ultralarge effective area and low bending loss for ultrahigh-speed WDM transmission. J. Lightwave Technol. 29(4), 511–515 (2010)

    Article  ADS  Google Scholar 

  • Mohammadzadehasl, N., Noori, M.: Design of low-loss and near-zero ultraflattened dispersion PCF for broadband optical communication. Photonics Nanostruct Fundam Appl 35, 100703 (2019)

    Article  Google Scholar 

  • Monfared, Y.E., Ponomarenko, S.A.: Extremely nonlinear carbon-disulfide-filled photonic crystal fiber with controllable dispersion. Opt. Mater. 88, 406–411 (2019)

    Article  ADS  Google Scholar 

  • Naghizade, S., Mohammadi, S.: Design and engineering of dispersion and loss in photonic crystal fiber 1× 4 power splitter (PCFPS) based on hole size alteration and optofluidic infiltration. Opt. Quant. Electron. 51(1), 17 (2019)

    Article  Google Scholar 

  • Olyaeea, S., Sadeghib, M., Taghipoura, F.: Design of low-dispersion fractal photonic crystal fiber. Int. J. Opt. Photonics 6(1), 57–64 (2012)

    Google Scholar 

  • Tee, D.C., Abu Bakar, M.H., Tamchek, N., MahamdAdikan, F.R.: Photonic Crystal Fiber in Photonic Crystal Fiber for Residual Dispersion Compensation Over E+S+C+L+U Wavelength Bands. IEEE Photonics J. 5(3), 7200607–7200607 (2013)

    Article  ADS  Google Scholar 

  • Udaiyakumar, R., Junaid, K.M., Janani, T., Maheswar, R., Yupapin, P., Amiri, I.S.: Optical properties study of nano-composite filled D shape photonic crystal fibre. Results Phys. 9, 1040–1043 (2018)

    Article  ADS  Google Scholar 

  • Wang, W., Qu, Y., Zhang, C., Zuo, Y., Han, Y., Wang, C., Qia, Y., Hou, L.: Novel design of broadband dispersion compensating photonic crystal fiber with all solid structure and low index difference. Optik 156, 279–288 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Khalesi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khoobjou, E., Khalesi, H., Ghods, V. et al. Dispersion and light loss reduction in photonic crystal fibers using nanoparticles optimization. Opt Quant Electron 53, 48 (2021). https://doi.org/10.1007/s11082-020-02726-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02726-6

Keywords

Navigation