Skip to main content
Log in

A review of Al2O3 as surface passivation material with relevant process technologies on c-Si solar cell

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Surface recombination loss limits the efficiency of crystalline silicon (c-Si) solar cell and effective passivation is inevitable in order to reduce the recombination loss. In this article, we have reviewed the prospects of aluminium oxide (Al2O3) as surface passivation material and associated process technologies are also addressed. Its underlined negative fixed charges, high process stability and process feasibility to use it in ultrathin films, make it exciting one as surface passivation material. Other materials used for passivation and their limitations are addressed. Relevant deposition techniques and their aspects are also discussed here. Ultrathin Al2O3 is generally produced by conventional Atomic Layer Deposition (ALD) methods. But slow deposition rate and low throughput made the ALD process limited its application in commercial solar industry. Plasma Enhanced Chemical Vapour Deposition (PECVD) is also used as alternative one but it suffers from high temperature process stability. Al2O3 deposited by Radio Frequency (RF) sputtering is found out to be one of the best deposition techniques because of its low cost and higher deposition rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aberle, A.: Crystalline silicon solar cells: advanced surface passivation and analysis. Centre for Photovoltaic Engineering, University of NSW, Australia (1999a)

    Google Scholar 

  • Aberle, A.G.: Crystalline Silicon Solar Cells: Advanced Surface Passivation and Analysis. UNSW Publishing and Printing Services, Sydney (1999b)

  • Aberle, A.G.: Overview on SiN surface passivation of crystalline silicon solar cells. In: Technical Digest of the 11th International Photovoltaic Science and Engineering Conference, Sapporo, pp. 569–572 (1999c)

  • Aberle, A.: Surface passivation of crystalline silicon solar cells: a review. Prog. Photovoltaics Res. Appl. 8, 473–487 (2000)

    Google Scholar 

  • Aberle, A.G., Hezel, R.: Progress in Low-temperature surface passivation of silicon solar cells using remote-plasma silicon nitride. Prog. Photovolt. 5, 29–50 (1997)

    Google Scholar 

  • Aberle, A.G., Glunz, S., Warta, W.: Field effect passivation of high efficiency silicon solar cells. Sol. Energy Mater. Sol. Cells 29(2), 175–182 (1993)

    Google Scholar 

  • Agostinelli, G. et al:. In: Proceedings of the 19th European Photovoltaics and Solar Energy Conference, Paris, France, pp. 132–134 (2004)

  • Agostinelli, G., et al.: Very low surface recombination velocities on p-type silicon wafers passivated with a dielectric with fixed negative charge. Sol. Energy Mater. Sol. Cells 90, 3438–3443 (2006)

    Google Scholar 

  • Agostinelli, G., Choulat, P., Dekkers, H.F.W., Vermarien, E., Beaucarne, G.: Rear surface passivation for industrial solar cells on thin substrates. In: Proceedings of 4th World Conf. Photovoltaic Energy Convers., pp. 1004–1007 (2006)

  • Angarita, G., Palacio, C., Trujillo, M., Arroyave, M.: Synthesis of alumina thin films using reactive magnetron sputtering method. IOP Conf. Ser. J. Phys. Conf. Ser. 850, 1–4 (2017)

    Google Scholar 

  • ASTM Standard F28-91, “Standard Method for Measuring the Minority-Carrier Lifetime in Bulk Germanium and Silicon,” 1996 Annual Book of ASTM Standards, Am. Soc. Test. Mat., West Conshohocken, PA, 1996

  • Balaji, N., Hussain, S.Q., Park, C., Raja, J., Yi, J., Jeyakumar, R.: Surface passivation schemes for high-efficiency c-si solar cells—a review. Trans. Electr. Electron. Mater. 16(5), 227–233 (2015)

    Google Scholar 

  • Bätzner, D.L., et al.: Properties of high efficiency silicon heterojunction cells. Energy Proc. 8, 153–159 (2011)

    Google Scholar 

  • Baumgarten, E., Wagner, R., Lentes-Wagner, C.: Quantitative determination of hydroxyl groups on alumina by IR spectroscopy. Fresenius Z Anal Chem. 334, 246–251 (1989)

    Google Scholar 

  • Benick, J., Hoex, B., van de Sanden, M.C.M., Kessels, W.M.M., Schultz, O., Glunz, S.W.: High efficiency n-type Si solar cells on Al(2)O(3)-passivated boron emitters. Appl. Phys. Lett. 92, 253504 (2008)

    ADS  Google Scholar 

  • Benick, J., Richter, A., Li, T.-T.A.A., Grant, N.E., McIntosh, K.R., Ren, Y., Weber, K.J.,Hermle, M., Glunz, S.W.: In: Proceedings of the 35th IEEE Photovoltaic Specialists Conference,Honolulu, HI, 20–25 June 2010. IEEE, New York (2010)

  • Benick, J., Zimmermann, K., Spiegelman, J., Hermle, M., Glunz, S.W.: Rear side passivation of PERC-type solar cells by wet oxides grown from purified steam. Prog. Photovolt. Res. Appl. 19, 361–365 (2011a)

    Google Scholar 

  • Benick, J., Zimmermann, K., Spiegelman, J., Hermle, M., Glunz, S.W.: Rear side passivation of PERC-type solar cells by wet oxides grown from purified steam. Prog. Photovolt. 19, 361–365 (2011b)

    Google Scholar 

  • Benner, F., Jordan, P.M., Knaut, M., Dirnstorfer, I., Bartha, J.W., Mikojajick, T.: Investigation of the c-Si/Al2O3 interface for silicon surface passivation. In: Proc 27th PVSEC, pp. 1793–1796 (2012)

  • Berg, S., Nyberg, T.: Fundamental understanding and modelling of reactive sputtering process. Thin Solid Films 476, 215–230 (2005)

    ADS  Google Scholar 

  • Bhaisare, M., Misra, A., Kottantharayil, A.: Aluminum oxide deposited by pulsed-DCreactive sputtering for crystalline silicon surface passivation. IEEE J. Photovolt. 3(3), 930–935 (2013)

    Google Scholar 

  • Bhaisare, M., Sutar, D., Misra, A., Kottantharayil, A.: Effect of power density on the passivation quality of pulsed - DC reactive sputtered aluminium oxide on p-type crystalline silicon. In: 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC), pp. 1207–1211 (2013)

  • Black, L.E., McIntosh, K.R.: Surface passivation of c-Si by atmospheric pressure emical vapor deposition of Al2O3. Appl. Phys. Lett. 100, 1–4 (2012)

    Google Scholar 

  • Chen, S., Tao, L., Zeng, L., Hong, R.: RF magnetron sputtering aluminum oxide film for surface passivation on crystalline silicon wafers. Int. J. Photoenergy (2013). https://doi.org/10.1155/2013/792357

    Article  Google Scholar 

  • Chowdhuri, A.R., Takoudis, C.G., Klie, R.F., Browning, N.D.: Metalorganic chemical vapor deposition of aluminum oxide on Si: evidence of interface SiO2 formation. Appl. Phys. Lett. 80(22), 4241–4243 (2002)

    ADS  Google Scholar 

  • Coletti, G., Kvande, R., Mihailetchi, V.D., Geerlings, L.J., Arnberg, L., Vrelid, E.J.: Effect of iron in silicon feedstock on p- and n-type multicrystalline silicon solar cells. J. Appl. Phys. 104, 104913 (2008)

    ADS  Google Scholar 

  • Curry, S.E., Lenahan, P.M., Krick, D.T., Kanicki, J., Kirk, C.T.: Appl. Phys. Lett. 56, 1359–1361 (1990)

    ADS  Google Scholar 

  • Das, U.K., Burrows, M.Z., Lu, M., Bowden, S., Birkmire, R.W.: Surface passivation and heterojunction cells on Si (100) and (111) wafers using dc and rf plasma deposited Si: H thin films. Appl. Phys. Lett. 92, 133107 (2008)

    Google Scholar 

  • Dauwe, S.: Low-temperature surface passivation of crystalline silicon and its application to the rear side of solar cells. Ph.D. dissertation, ISFH, Univ. Hanover, Hanover, Germany (2004)

  • Dauwe, S., Mittelstadt, L., Metz, A., Hezel, R.: Experimental evidence of parasitic shunting in silicon nitride rear surface passivated solar cells. Prog. Photovolt. 10, 271–278 (2002)

    Google Scholar 

  • de Wolf, S., Demaurex, B., Descoeudres, A., Ballif, C.: Very fast light-induced degradation of a-Si:H/c-Si(100) interfaces. Phys. Rev. B 83, 233301 (2011)

    ADS  Google Scholar 

  • Dingemans, G., Kessels, W.M.M.: Status and prospects of Al2O3-based surface passivation schemes for silicon solar Cells. J. Vac. Sci. Technol., A 30(4), 093713 (2012)

    Google Scholar 

  • Dingemans, G., Seguin, R., Engelhart, P., van de Sanden, M.C.M., Kessels, W.M.M.: Silicon surface passivation by ultrathinAl2O3 films synthesized by thermal and plasma atomic layerdeposition. Phys. Status Solidi RRL 4, 10 (2010a)

    Google Scholar 

  • Dingemans, G., van de Sanden, M.C.M., Kessels, W.M.M.: Influence of the deposition temperature on the c-Si Surface passivation by Al2 O3 films synthesized by ALD and PECVD. Electrochem. Solid-State Lett. 13, H76–H79 (2010b)

    Google Scholar 

  • Dingemans, G., Beyer, W., Van de Sanden, M.C.M., Kessels, W.M.M.: Hydrogen inducedpassivation of Si interfaces by Al2O3 films and SiO2/Al2O3 stacks. Appl. Phys. Lett. 97, 152106 (2010c)

    ADS  Google Scholar 

  • Dingemans, G., van de Sanden, M.C.M., Kessels, W.M.M.: Excellent Si surface passivation by low temperature SiO2 usingan ultrathin Al2O3 capping film. Phys. Status Solidi RRL 5(1), 22–24 (2011a)

    Google Scholar 

  • Dingemans, G., Terlinden, N.M., Pierreux, D., Profijt, H.B., Van de Sanden, M.C.M., Kessels, W.M.M.: Influence of the oxidant on the chemical and field-effect passivation ofSi by ALD Al2O3. Electrochem. Solid State Lett. 14, H1 (2011b)

    Google Scholar 

  • Dingemans, G., Einsele, F., Beyer, W., Van de Sanden, M.C.M., Kessels, W.M.M.: Influenceof annealing and Al2O3 properties on the hydrogen-induced passivation of the Si/SiO2interface. J. Appl. Phys. 111, 093713 (2012)

    ADS  Google Scholar 

  • Doshi, R.A., Moschner, P., Lauinger, J., Aberle, T., Ruby, A.G.D.S.: Comprehensive study of rapid low cost silicon surface passivation technologies. IEEE Trans. Electron Devices 47, 987–993 (2000)

    ADS  Google Scholar 

  • Duerinckx, F., Szlufcik, J.: Defect passivation of industrial multicrystalline solar cells basedon PECVD silicon nitride. Sol. Energy Mater. Sol. Cells 72, 231–246 (2002)

    Google Scholar 

  • Dullweber, T., Schmidt, J.: Industrial silicon solar cells applying the passivated emitter and rear cell (PERC) concept—a review. IEEE J. Photovol. 6(5), 1366–1379 (2016)

  • Duttagupta, S., Ma, F.J., Lin, S.F., Mueller, T., Aberle, A.G., Hoex, B.: Progress in surface passivation of heavily doped n-type and p-type silicon by plasma-deposited AlOx/SiNx dielectric stacks. IEEE J. Photovoltaics 3(4), 1163–1169 (2013)

    Google Scholar 

  • Elliott, S.D., Scarel, G., Wiemer, C., Fanciulli, M., Pavia, G.: Ozone-based atomic layer deposition of alumina from TMA: growth, morphology, and reaction mechanism. Chem. Mater. 18, 3764–3773 (2006)

    Google Scholar 

  • Elmiger, J.R., Kunst, M.: Investigating of charge carrier injection in silicon nitride/silicon junctions. Appl. Phys. Lett. 69, 517–519 (1996)

    ADS  Google Scholar 

  • Emesh, I.T., D’Asti, G., Mercier, J.S., Leung, P.: J. Electrochem. Soc. 136, 3404–3408 (1989)

    ADS  Google Scholar 

  • Fitzgerald, D.J., Grove, A.S.: Surface recombination in semiconductors. Surf. Sci. 9(2), 347–369 (1968)

    ADS  Google Scholar 

  • Gao, J., He, G., Wang, D., Liang, S.: Modulation of the interfacial and electrical properties of atomic-layer-deposited Hf0.5Al0.5O/Si gate stacks using Al2O3 passivation layer with various thickness. J. Vacuum Sci. Technol. A 37, 011101 (2019)

  • García-Valenzuela, J.A., Rivera, R., Morales-Vilches, A.B., Gerling, L.G., Caballero, A., Asensi, J.M., Voz, C., Bertomeu, J., Andreu, J.: Main properties of Al2O3 thin films deposited by magnetron sputtering on p-type c-Si wafers. Thin Solid Films 619, 288–296 (2016)

    ADS  Google Scholar 

  • García-Valenzuela, J.A., Caballero, A., Asensi, J.M., Bertomeu, J., Andreu, J., Gerling-Sarabia, L.G., Morales-Vilches, A.B., Ortega, P., Voz, C.: Intermediate amorphous silicon layer for crystalline silicon passivation with alumina, EU PVSEC Proceedings (2015), 719–723 (presented at: 31st European Photovoltaic Solar Energy Conferenceand Exhibition (EU PVSEC 2015), Hamburg, Germany, September 14–18, 2015)

  • Gatz, S., Plagwitz, H., Altermatt, P.P., Terheiden, B., Brendel, R.: Thermal stability of amorphous silicon/silicon nitride stacks for passivating crystalline silicon solar cells. Appl. Phys. Lett. 93, 173502 (2008)

    ADS  Google Scholar 

  • Gatz, S., Hannebauer, H., Hesse, R., Werner, F., Schmidt, A., Dullweber, T., Schmidt, J., Bothe, K., Brendel, R.: 19.4%-efficient large-area fully screen-printed silicon solar cells. Phys. Status Solidi-Rapid Res. Lett. 5(4), 147–149 (2011)

  • George, S.M.: Atomic layer deposition: an overview. Chem. Rev. 110, 111–131 (2010)

    Google Scholar 

  • George, S.M., Dameron, A.A., Yoon, B.: Surface chemistry for molecular layer deposition of organic and hybrid organic − inorganic polymers. Acc. Chem. Res. 42, 498–508 (2009)

    Google Scholar 

  • Glunz, S.W. et al.: In: Proceedings of the 35th IEEE Photovoltaic Specialists Conference, Honolulu, HI, pp. 20–25 (2010)

  • Glunz, S.W., Benick, J., Biro, D., Bivour, M., Hermle, M., Pysch, D., Rauer, M., Reichel, C.,Richter, A., Rüdiger, M., Schmiga, C., Suwito, D., Wolf, A., Preu, R.: n-type silicon-enabling efficiencies > 20% in industrial production. In: Proceedings of the 35th IEEE Photovoltaic Specialists Conference, Honolulu, Hawaii, USA, pp. 50–56 (2010)

  • Goldstein, D.N., McCormick, J.A., George, S.M.: Al2O3 atomic layer deposition ith trimetwhylaluminum and ozone studied by in situ transmission FTIR spectroscopy and quadrupole mass spectrometry. J. Phys. Chem. C 112, 19530–19539 (2008)

    Google Scholar 

  • Green, M.L., Gusev, E.P., Degraeve, R., Garfunkel, E.L.: Ultrathin (< 4 nm) SiO2 and Si–O–N gate dielectric layers for silicon microelectronics: understanding the processing, structure, and physical and electrical limits. J. Appl. Phys. 90, 2057–2121 (2001)

    ADS  Google Scholar 

  • Green, M.A., Emery, K., Hishikawa, Y., Warta, W., Dunlop, E.D.: NIMS sets a new world record for the highest conversion efficiency in dye-sensitized solar cells. Prog. Photovolt. 20, 12–20 (2012)

    Google Scholar 

  • Gruenbaum, P.E., Sinton, R.A., Swanson, R.M.: Light-induced degradation at the silicon/silicon dioxide interface. Appl. Phys. Lett. 52, 1407–1409 (1988)

    ADS  Google Scholar 

  • Gupta, A., Comppan, A.: All-sputtered 14% CdS/CdTe thin-film solarcell with ZnO: Al transparent conducting oxide. Appl. Phys. Lett. 85, 684–686 (2004)

    ADS  Google Scholar 

  • Hall, R.: Electron-hole recombination in germanium. Phys. Rev. 87(2), 387–388 (1952)

    ADS  Google Scholar 

  • Heil, S.B.S., van Hemmen, J.L., van de Sanden, M.C.M., Kessels, W.M.M.: J. Appl. Phys. 103, 103302 (2008)

    ADS  Google Scholar 

  • Hezel, R., Jaeger, K.: Low-temperature surface passivation of siliconfor solar cells. J. Electrochem. Soc. 136, 518–523 (1989)

    ADS  Google Scholar 

  • Hoex, B., Heil, S.B.S., Langereis, E., van de Sanden, M.C.M., Kessels, W.M.M.: Ultralow surface recombination of c-Si substrate passivated by plasma-assisted atomic layer deposited Al2O3. Appl. Phys. Lett. 89, 042112 (2006)

    ADS  Google Scholar 

  • Hoex, B., Schmidt, J., Bock, R., Altermatt, P.P., van de Sanden, M.C.M., Kessels, W.M.M.: Excellent passivation of highly doped p-type Si surfaces by the negative-charge-dielectric Al2O3. Appl. Phys. Lett. 91, 112107 (2007)

    ADS  Google Scholar 

  • Hoex, B., Schmidt, J., Pohl, P., van de Sanden, M.C.M., Kessels, W.M.M.: Silicon surface passivation by atomic layer deposited Al2O3. J. Appl. Phys. 104, 044903 (2008a)

    ADS  Google Scholar 

  • Hoex, B., Schmidt, J., Pohl, P., van de Sanden, M.C.M., Kessels, W.M.M.: Silicon surface passivation by atomic-layer-deposited Al2O3. J. Appl. Phys. 104, 044903 (2008b)

    Google Scholar 

  • Hoex, B., Gielis, J.J.H., van de Sanden, M.C.M., Kessels, W.M.M.: On the c-Si surface passivation mechanism by the negative-charge-dielectric Al2O3. J. Appl. Phys. 104, 113703 (2008c)

    ADS  Google Scholar 

  • Hsu, C.H., et al.: Enhanced Si passivation and PERC solar cell efficiency by atomic layer deposited aluminum oxide with two-step post annealing. Nanoscale Res. Lett. 14(139), 1–10 (2019)

    ADS  Google Scholar 

  • Kersten, F., Schmidb, A., Bordihn, S., Müllerand, J.W., Heitmann, J.: Role of annealing conditions on surface passivation properties of ALD Al2O3 films. Energy Proc. 38, 843–848 (2013)

    Google Scholar 

  • Kersten, F., Heitmann, J., Müller, J.W.: Influence of Al2O3 and SiNx passivation layers on LeTID. Energy Proc. 92, 828–832 (2016)

  • Kim, Y.-C., Park, H.-H., Chun, J.S., Lee, W.-J.: Compositional and structural analysis of aluminum oxide films prepared by plasma-enhanced chemical vapor deposition. Thin Solid Films 237, 57–65 (1994)

    ADS  Google Scholar 

  • Kotipalli, R., Delamare, R., Henry, F., Proost, J., Flandre, D.: Thermal stability analysis of DC-sputtered Al2O3 films for surface passivation of c-Si solar cells. In: EU PVSEC Proceedings 2013, 1278–1281 (presented at: 28th European Photovoltaic Solar EnergyConference and Exhibition (28th EU PVSEC), Paris, France, September 30–October 4, 2013)

  • Kühnhold, S., Kafle, B., Kroely, L., Saint-Cast, P., Hofmann, M., Rentsch, J., Preu, R.: Impact of thermal treatment on PECVD Al2O3 passivation layers. Energy Proc. 27, 273–279 (2012)

    Google Scholar 

  • Langereis, E., Keijmel, J., van de Sanden, M.C.M., Kessels, W.M.M.: Surface chemistry of plasma-assisted atomic layer deposition of Al2O3 studied by infrared spectroscopy. Appl. Phys. Lett. 92, 231904 (2008)

    ADS  Google Scholar 

  • Lauinger, T., Schmidt, J., Aberle, A.G., Hezel, R.: Surface passivation properties of silicon:siliconoxide:siliconnitride structures for solar cells. In: Proceedings of the 13th European Photovoltaic Solar Energy Conference, Nice, pp. 1291–1294 (1995)

  • Lauinger, T., Moschner, J., Aberle, A.G., Hezel, R.: J. Vac. Sci. Technol. A 16, 530 (1998)

  • Leendertz, C., Mingirulli, N., Schulze, T.F., Kleider, J.P., Rech, B., Korte, L.: Discerning passivation mechanisms at a-Si:H/c-Si interfaces by means of photoconductance measurements. Appl. Phys. Lett. 98, 202108 (2011)

    ADS  Google Scholar 

  • Lelievre, J.-F., Fourmond, E., Kaminski, A., Palais, O., Ballutaud, D., Lemiti, M.: Study of the composition of hydrogenated silicon nitride SiNx: H for efficient surface and bulk passivation of silicon. Sol. Energy Mater. Sol. Cells 93, 1281–1286 (2009)

    Google Scholar 

  • Li, T.: Surface passivation of crystalline silicon by sputtered aluminium oxide, Ph.D.dissertation, Dept. Eng., The Australian National University, Canberra, Australia, (2010)

  • Li, T.-T., Cuevas, A.: Effective surface passivation of crystalline silicon by rf sputtered aluminum oxide. Phys. Status Solidi (RRL) (2009a). https://doi.org/10.1002/pssr.200903140

    Article  Google Scholar 

  • Li, T.-T.A., Cuevas, A.: Role of hydrogen in the surface passivation of crystalline silicon by sputtered aluminum oxide. Prog. Photovolt. Res. Appl. 19(3), 320–325 (2011)

    Google Scholar 

  • Li, T.-T.A., Ruffell, S., Tucci, M., Mansoulié, Y., Samundsett, C., De Iullis, S., Serenelli, L., Cuevas, A.: Influence of oxygen on the sputtering of aluminum oxide for the Surface passivation of crystalline silicon. Sol. Energy Mater. Sol. Cells 95(1), 69–72 (2011)

    Google Scholar 

  • Liang, W., Weber, K.J., Thomson, A.F.: EffectiveSiNx: H capping layers on 1-nm Al2O3 for p + Surface Passivation. IEEE J. Photovolt. 4, 1405–1412 (2014)

    Google Scholar 

  • Liu, D., Clark, S.J., Robertson, J.: Oxygen vacancy levels and electron transport in Al2O3. Appl. Phys. Lett. 96, 032905 (2010)

    ADS  Google Scholar 

  • Lucovsky, G., Phillips, J.C., Thorpe, M.F.: In: Proceedings of the Characterisation and Metrology for ULSI Technology, pp. 154–158 (2000)

  • Macco, B., Melskens, J., Podraza, N.J., Arts, K., Pugh, C., Thomas, O., Kessels, W.M.M.: Correlatingthe silicon surface passivation to the nanostructure of low-temperature a-Si: H after rapid thermal annealing. J. Appl. Phys. 122(3), 035302 (2017). https://doi.org/10.1063/1.4994795

    Article  ADS  Google Scholar 

  • Macdonald, D., Cuevas, A.: Measuring and interpreting the lifetime of silicon wafers. Sol. Energy 76, 255–262 (2004)

    ADS  Google Scholar 

  • Mäckel, H., Lüdemann, R.: Detailed study of the composition of hydrogenated SiNx layers for high-quality silicon surface passivation. J. Appl. Phys. 92, 2602–2609 (2002)

  • Maniv, S., Westwood, W.D.: Oxidation of an aluminum magnetron sputtering target in Ar/O2 mixtures. J. Appl. Phys. 51, 718–725 (1980)

    ADS  Google Scholar 

  • Martin de Nicolá, S., Munõz, D., Ozanne, A.S., Nguyen, N., Ribeyron, P.J.: Optimisation of doped amorphous silicon layers applied to heterojunction solar cells. Energy Proc. 8, 226–231 (2011)

    Google Scholar 

  • Matsunaga, K., Tanaka, T., Yamamoto, T., Ikuhara, Y.: First-principles calculations of intrinsic defects in Al2O3. Phys. Rev. B 68, 085110 (2003)

    ADS  Google Scholar 

  • Mattox, D.M.: Particle bombardment effects on thin-film deposition: a review. J. Vac. Sci. Technol., A 7(3), 1105–1114 (1989)

    ADS  Google Scholar 

  • Mattox, D.M.: Physical sputtering and sputter deposition (sputtering), Handbook ofPhysical Vapor Deposition (PVD) Processing, 2nd ed. ElsevierInc, pp. 237–286 (2010)

  • May, C., Strumpfel, J.: ITO coating by reactive magnetron sputtering—comparison of properties from DC and MF processing. Thin Solid Films 351, 48–52 (1999)

    ADS  Google Scholar 

  • McIntyre, P.C.: Bulk and interfacial oxygen defects in HfO2 gate dielectric stacks: a critical assessment. ECS Trans. 11(4), 235–249 (2007)

    Google Scholar 

  • Melskens, J., van de Loo, B.W.H., Macco, B., Black, L.E., Smit, S., Kessels, W.M.M.: Passivating contacts for crystalline silicon solar cells: from concepts and materials to prospects. IEEE J. Photovolt. 8(2), 373–388 (2018)

  • Mingirulli, N., et al.: Efficient interdigitated back-contacted silicon heterojunction solar cells. Status Solidi (RRL) 5, 159–161 (2011)

    Google Scholar 

  • Miyajima, S., Irikawa, J., Yamada, A., Konagai, M.: In: 23rd European PhotovoltaicSolar Energy Conference, WIP Renewable Energies, Valencia (2008)

  • Nagel, H., Aberle, A., Hezel, R.: Optimised antireflection coatings for planar silicon solar cells using remote PECVD silicon nitride and poroud silicon dioxide. Prog. Photovolt. Res. Appl. 17, 245–260 (1999a)

    Google Scholar 

  • Nagel, H., Berge, C., Aberle, A.G.: Generalized analysis of quasi-steady-state and quasi-transient measurements of carrier lifetimes in semiconductors. J. Appl. Phys. 86, 6218–6221 (1999b)

    ADS  Google Scholar 

  • Ohring, M.: Discharges, plasmas, and ion-surface interactions, Materials Science ofThin Films, 2nd ed. Academic Press, pp. 145–202(2001)

  • Olsson, M.K., Macak, K., Helmersson, U., Hjorvarsson, B.: High ratereactive dc magnetron sputter deposition of Al2O3 films. J. Vac. Sci. Technol., A 16, 639–643 (1998)

    ADS  Google Scholar 

  • Otaredian, T.: Separate contactless measurement of the bulk lifetime and the surface recombination velocity by the harmonic optical generation of the excess carriers. Solid-State Electron. 36, 153–162 (1993)

    ADS  Google Scholar 

  • Peri, J.: Infrared and Gravimetric Study of the Surface Hydration of J-Alumina, Research and Development Department, American Oil Company, Whiling, Indiana, 69: 1, (1965)

  • Poodt, P., Cameron, D. C., Dickey, E., George, S. M., Kuznetsov, V., Parsons, G. N., Vermeer, A.: Spatial atomic layer deposition: a route towards further industrialization of atomic layer deposition, Journal ofVacuum Science and Technology. A: Vacuum, Surfaces, and Films, 30(1), (2012), https://doi.org/10.1116/1.3670745

  • Potts, S.E., Keuning, W., Langereis, E., Dingemans, G., van de Sanden, M.C.M., Kessels, W.M.M.: Low temperature plasma-enhanced atomic layer deposition of metal oxide thin films. J. Electrochem. Soc. 157, P66–P74 (2010)

    Google Scholar 

  • Profijt, H.B., Kudlacek, P., Van de Sanden, M.C.M., Kessels, W.M.M.: Ion and photon surface interaction during remote plasma ALD of metal oxides. J. Electrochem. Soc. 158, G88–G91 (2011)

    Google Scholar 

  • Puurunen, R.L.: Surface chemistry of atomic layer deposition: a case study for the trimethylaluminum/water process. J. Appl. Phys. 97, 121301–121302 (2005a)

    ADS  Google Scholar 

  • Puurunen, R.L.: Correlation between the growth-per-cycle and the surface hydroxyl group concentration in the atomic layer deposition of aluminum oxide from Trimethylaluminum and water. Appl. Surf. Sci. 245(1–4), 6–10 (2005b)

    ADS  Google Scholar 

  • Rahman, M.Z., Khan, S.I.: Advances in surface passivation of c-Si solar cells. Mater. Renew. Sustain. Energy (2012). https://doi.org/10.1007/s40243-012-0001-y

    Article  Google Scholar 

  • Reed, M.L., Plummer, J.D.: Chemistry of Si-SiO2 interface trap annealing. J. Appl. Phys. 63, 5776–5793 (1988)

    ADS  Google Scholar 

  • Repo, P., Talvitie, H., Li, S., Skarp, J., Savin, H.: Silicon surface passivation by Al2O3: effect of ALD reactants. Energy Proc. 8, 681–687 (2011)

    Google Scholar 

  • Robertson, J.: Interfaces and defects of high-K oxides on silicon. Solid-State Electron. 49, 283–293 (2005)

    ADS  Google Scholar 

  • Sai, H., Imai, R., Yamamoto, N., Ishiwata, T., Arafune, K., Ohshita, Y., Yamaguchi, M.: Surface recombination at Si/SiO2 interface with various interface state densities and oxidecharges. In: Proceedigs of 21st European Photovoltaic Solar Energy Conference, p. 915, WIP-Renewable Energies, Munich, Germany (2006)

  • Saint-Cast, P., Kania, D., Hofmann, M., Benick, J., Rentsch, J., Preu, R.: Very low surface recombination velocity on p-type c-Si by high-rate plasma-deposited aluminium oxide. Appl. Phys. Lett. 95, 151502 (2009)

    ADS  Google Scholar 

  • Saint-Cast, P., Benick, J., Kania, D., Weiss, L., Hofmann, M., Rentsch, J., Preu, R., Glunz, S.W.: IEEE Electron Dev. Lett. 31, 695–697 (2010)

    ADS  Google Scholar 

  • Saint-Cast, P., Kania, D., Heller, R., Kuehnhold, S., Hofmann, M., Rentsch, J., Preu, R.: High-temperature stability of c-Si surface passivation by thick PECVD Al2O3 with and without hydrogenated capping layers. Appl. Surf. Sci. 258, 8371–8376 (2012)

    ADS  Google Scholar 

  • Santbergen, R., van Zolingen, R.J.C.: The absorption factor of crystalline silicon PV cells: a numerical and experimental study. Sol. Energy Mater. Sol. Cells 92(4), 432–444 (2008)

    Google Scholar 

  • Sawada T. et al. High-efficiency a-Si/c-Si heterojunction solar cell. In: Proceeding of 24th IEEE Photovoltaic Spec. Conf., Waikoloa, HI, USA, 1219–1226 (1994)

  • Schaper, M., Schmidt, J., Plagwitz, H., Brendel, R.: 20.1%-efficient crystalline silicon solar cell with amorphous silicon rear-surface passivation. Prog. Photovolt. Res. Appl. 13, 381–386 (2005)

    Google Scholar 

  • Schmidt, J., Moschner, J.D., Henze, J., Dauwe, S., Hezel, R.: Recent progress in the surface passivation of silicon solar cells using silicon nitride. In: Proceedings of 19th European Photovoltaic SolarEnergy Conference, Paris, France, 7–11 June 2004, p. 391. WIP-Renewable Energies, Munich, Germany (2004)

  • Schmidt, J., Merkle, A., Brendel, R., van de Sanden, M.C.M., Kessels, W.M.M.: Surface passivation of high-efficiency silicon solar cells byatomic-layer-deposited Al2O3. Prog. Photovolt. Res. Appl. 16, 461–466 (2008)

    Google Scholar 

  • Schmidt, J., Veith, B., Werner, F., Zielke, D., Brendel, R.: Siliconsurface passivation by ultrathin Al2O3 films and Al2O3/SiNx stacks. In: Proc. 35th IEEE Photovoltaic Spec. Conf., Honolulu, HI, USA, pp. 885–890 (2010)

  • Schmidt, J., Werner, F., Veith, B., Zielke, D., Bock, R., Brendel, R., Tiba, V., Poodt, P., Roozeboom, F., Li, A., Cuevas, A.: Surface passivation of silicon solar cells using industrially relevant Al2O3 deposition techniques, Technical Papers, Edition 10, Photovoltaics International, pp. 52–57 (2011)

  • Schmidt, J., Werner, F., Veith, B., Zielke, D., Steingrube, S., Altermatt, P.P., Gatz, S., Dullweber, T., Brendel, R.: Advances in the surface passivation of silicon solar cells. Energy Proc. 15, 30–39 (2012)

    Google Scholar 

  • Schnabel, M., van de Loo, B.W.H., Nemeth, W., Macco, B., Stradins, P., Kessels, W.M.M., Young, D.L.: Hydrogen passivation of poly-Si/SiOx contacts for Si solar cells using Al2O3 studied with deuterium. Appl. Phys. Lett. 112, 203901 (2018)

  • Schroder, D.: Semiconductor Material and Device Characterization. Wiley-IEEE Press, Hoboken (2006)

    Google Scholar 

  • Schuldis, D., Richter, A., Benick, J., Saint-Cast, P., Hermle, M., Glunz, S.W.: Properties of the c-Si/Al2O3 interface of ultrathin atomic layer deposited Al2O3 layers capped by SiNx for c-Si surface passivation. Appl. Phys. Lett. 105, 231601 (2014)

    ADS  Google Scholar 

  • Schultz, O., Mette, A., Hermle, M., Glunz, S.W.: Thermal oxidation for crystalline silicon solar cells exceeding 19% efficiency applying industrially feasible process technology. Prog. Photovolt. 16, 317–322 (2008)

    Google Scholar 

  • Schulze, T.F., Beushausen, H.N., Leendertz, C., Dobrich, A., Rech, B., Korte, L.: Interplay of amorphous silicon disorder and hydrogen content with interface defects in amorphous/crystalline silicon heterojunctions. Appl. Phys. Lett. 96, 25102 (2010)

    Google Scholar 

  • Shaoqing, X., Shuyan, X.: Status and Progress of High-efficiency Silicon Solar Cells, Springer Series in Materials Science, 190 (2014)

  • Shockley, W., Read, W.: Statistics of the recombinations of holes and electrons. Phys. Rev. Lett. 87(5), 835–842 (1952)

    ADS  MATH  Google Scholar 

  • Sinton, R.A., Cuevas, A.: Contactless determination of current–voltage characteristics and minority-carrier lifetimes in semiconductors from quasi-steady-state photoconductance data. Appl. Phys. Lett. 69, 2510–2512 (1996)

    ADS  Google Scholar 

  • Sittinger, V., Ruske, F., Werner, W., Szyszk, B., Rech, B., Hupkes, J., Schope, G., Stiebig, H.: ZnO: Al films deposited by in-line reactive ACmagnetron sputtering for a-Si: H thin film solar cells. Thin Solid Films 496, 16–25 (2006)

    ADS  Google Scholar 

  • Soppe, W.J., Duijvelaar, B.G., Schiermeier, S.E.A.: Proc. of 16th European PVSEC, Glasgow, UK, 1420–1423 (2000)

  • Sproul, A.B., Green, M.A., Stephens, A.W.: Accurate determination of minority carrier and lattice scattering-mobility in silicon from photoconductance decay. J. Appl. Phys. 72, 4161–4171 (1992)

    ADS  Google Scholar 

  • Stesmans, A., Afanas’ev, V.V.: Interlayer-related paramagnetic defects in stacks of ultrathin layers of SiOx, Al2O3, ZrO2, and HfO2 on (100)Si. J. Appl. Phys. 97, 033510 (2004)

    ADS  Google Scholar 

  • Stocks, M., Cuevas, A., Blakers, A.: Minority carrier lifetimes of multicrystalline silicon during solar cell processing. In: Proceedingsof the 14th European Photovoltaic Solar Energy Conference, Barcelona, Spain, 30, 770–773(1997)

  • van Hemmen, J.L., Heil, S.B.S., Klootwijk, J., Roozeboom, F., Hodson, C.J., van de Sanden, M.C.M., Kessels, W.M.M.: Plasma and thermal ALD of Al2O3 in a commercial 200 mm ALD reactor. J. Electrochem. Soc. 154(7), G165 (2007)

    Google Scholar 

  • van Sark, W.G.J.H.M., Korte, L., Roca, F.: Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells. Springer, Heidelberg (2012)

    Google Scholar 

  • Verlaan, V., van den Elzen, L.R.J.G., Dingemans, G., van de Sanden, M.C.M., Kessels, W.M.M.: Composition and bonding structure of plasma-assisted ALD Al2O3 films. Phys. Status Solidi C 7, 976–979 (2010)

    Google Scholar 

  • Vermang, B., Rothschild, A., Racz, A., John, J., Poortmans, J., Mertens, R., Poodt, P., Tiba, V., Roozeboom, F.: Spatially separated atomic layer deposition of Al2O3, a new Option for high-throughput Si solar cell passivation. Prog. Photovolt. Res. Appl. 19, 733–739 (2011)

    Google Scholar 

  • Vuoristo, P., Mantyla, T., Kettunen, P., Lappalainen, R.: Stoichiometry and impurities in sputtered alumina films on copper. Thin Solid Films 204, 297–311 (1991)

    ADS  Google Scholar 

  • Warren, W.L., Kanicki, J., Robertson, J., Poindexter, E.H., McWhorter, P.J.: J. Appl. Phys. 74, 4034–4046 (1993)

    ADS  Google Scholar 

  • Weber, J.R., Janotti, A., van de Walle, C.G.: Native defects in Al2O3 and their impact on III-V/Al2O3 metal-oxide-semiconductor-based devices. J. Appl. Phys. 109, 033715 (2011)

    ADS  Google Scholar 

  • Werner, F., Veith, B., Tiba, V., Poodt, P., Roozeboom, F., Brendel, R., Schmidt, J.: Very lowsurface recombination velocities on p- and n-type c-Si by ultrafast spatial atomic layerdeposition of aluminum oxide. Appl. Phys. Lett. 97, 162103 (2010)

    ADS  Google Scholar 

  • Werner, F., Stals, W., Görtzen, R., Veith, B., Brendel, R., Schmidt, J.: High-rate atomic layer deposition of Al2O3 for the surface passivation of Si solar cells. Energy Proc. 8, 301–306 (2011a)

    Google Scholar 

  • Werner, F., Veith, B., Zielke, D., Kuhnemund, L., Tegenkamp, C., Seibt, M., Brendel, R., Schmidt, J.: Electronic and chemical properties of the c-Si/Al2O3 interface. J. Appl. Phys. 109, 113701 (2011b)

    ADS  Google Scholar 

  • Xiaodong, W., Zhiming, M.W.: High-efficiency solar cells physics, materials, and devices. Springer Series Mater. Sci. 190, 1–58 (2014)

    Google Scholar 

  • Zhang, X., Cuevas, A.: Plasma hydrogenated, reactively sputtered aluminium oxide for silicon surface passivation. Phys. Status Solidi RRL 7(9), 619–622 (2013)

    Google Scholar 

  • Zhang, X., Cuevas, A., Thomson, A.: Process control of reactive sputter deposition of AlOx and improved surface passivation of crystalline silicon. IEEE J. Photovolt. 3(1) (2013)

  • Zhang, X., Thomson, A., Cuevas, A.: Silicon surface passivation by sputtered aluminumoxide: influence of annealing temperature and ambient gas. ECS Solid State Lett. 3(11), N37–N39 (2014)

    Google Scholar 

  • Zhou, H.P., Wei, D.Y., Xu, L.X., Guo, Y.N., Xiao, S.Q., Huang, S.Y., Xu, S.: Low temperatureSiNx: H films deposited by inductively coupled plasma for solar cell applications. Appl. Surf. Sci. 11, 111–117 (2012)

    Google Scholar 

  • Zielke D, Petermann JH, Werner F, Veith B, Brendel R, Schmidt J. Contact passivation in silicon solar cells using atomiclayer-deposited aluminium oxide layers. Phys. Status Solidi RRL; 5: 298–300(2011)

Download references

Acknowledgements

This work is partly supported by MHRD, Government of India, through the project, Establishment of Centre of Excellence in Renewable Energy, under FAST scheme (Sanc. No. F.No.5- 6/2013-TS-VlI dated 4 August 2014) at the Indian Institute of Technology (Indian School of Mines), Dhanbad.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudipta Banerjee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, S., Das, M.K. A review of Al2O3 as surface passivation material with relevant process technologies on c-Si solar cell. Opt Quant Electron 53, 60 (2021). https://doi.org/10.1007/s11082-020-02689-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02689-8

Keywords

Navigation