Skip to main content
Log in

Quantum holography in ladder-plus-Y double quantum dot system

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This work studies quantum holography in a ladder-plus-Y double quantum dot system. The density matrix theory is used to model the system and an analytical solution of the susceptibility is done. Different parameters and situations are examined in this study. A comparison with the classical holograph is examined. A coincidence with the transmission amplitude is shown means that good holography of the object is performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdullah, M., Mohammed Noori, F.T., Al-Khursan, A.H.: Terahertz emission in ladder plus Y-configurations in double quantum dot structure. Appl. Optics 54, 5168–5192 (2015)

    Article  Google Scholar 

  • Akram, H., Al-Khursan, A.H.: Second-order nonlinearity in ladder plus-Y configuration in double quantum dot structure. Appl. Optics 55, 9866–9874 (2016)

    Article  ADS  Google Scholar 

  • Al-Salihi, F.R., Al-Khursan, A.H.: Electromagnetically induced grating in double quantum dot system. Optical Quantum Electron. 52, 185 (2020)

    Article  Google Scholar 

  • Asghar, S., Ziauddin, S.Q., Qamar, S.: Electromagnetically induced grating with Rydberg atoms. Phys. Rev. A 94, 033823 (2016)

    Article  ADS  Google Scholar 

  • Asghar, S., Ziauddin, S.Q., Qamar, S.: Effect of partial coherence on diffraction intensity of a Gaussian Schell-model beam using two-level atomic grating. J. OSA B 34, 148–153 (2017)

    ADS  Google Scholar 

  • Asghar, S., Abbas, M., Qamar, S., Qamar, S.: Electromagnetically induced holographic imaging with Rydberg atoms. Optics Commun. 437, 290–296 (2019)

    Article  ADS  Google Scholar 

  • Ben Ezra, Y., Lembrikov, B.I., Haridim, M.: Specific Features of XGM in QD-SOA. IEEE J. Quantum Electron. 43, 730–737 (2007)

    Article  ADS  Google Scholar 

  • Flayyih, A.H., Al-Khursan, A.H.: Integral gain in quantum dot semiconductor optical amplifiers. Superlattices Microstr 62, 81–87 (2013)

    Article  ADS  Google Scholar 

  • Gabor, D.: A new microscopic principle. Nature 161, 777–778 (1948)

    Article  ADS  Google Scholar 

  • Hachim, F.K., Hanoon, F.H., Al-Khursan, A.H.: Adaptive prism using double quantum dot structur. Appl. Optics 59, 2759–2766 (2020)

    Article  ADS  Google Scholar 

  • Hao, X., Wu, J., Wang, Y.: Steady-state absorption–dispersion properties and four wave mixing process in a quantum dot nanostructure. J. Opt. Soc. Am. B 29, 420–428 (2012)

    Article  ADS  Google Scholar 

  • Islam, M.S., Piao, Y., Zhao, Y., Kwon, K., Cho, E., Kim, N.: Max-depth-range technique for faster full-color hologram generation. Appl. Opt. 59, 3156–3164 (2020)

    Article  ADS  Google Scholar 

  • Ma, D., Yu, D., Zhao, X., Qian, J.: Unidirectional and controllable higher-order diffraction by a Rydberg electromagnetically induced grating. Phys. Rev. A 99, 033826 (2019)

    Article  ADS  Google Scholar 

  • Madan, I., Vanacore, G.M., Pomarico, E., Berruto, G., Lamb, R.J., McGrouther, D., Lummen, T.T.A., Latychevskaia, T., García de Abajo, F.J., Carbone, F.: Holographic imaging of electromagnetic fields via electron-light quantum interference. Sci. Adv. 5, eaav8358 (2019)

    Article  ADS  Google Scholar 

  • Pagliarulo, V., Russo, T., Miccio, L., Ferraro, P.: Numerical tools for the characterization of microelectromechanical systems by digital holographic microscopy. J. Micro/Nanolith. MEMS MOEMS 14, 041314 (2015)

    Article  ADS  Google Scholar 

  • Pan, Y., Wang, K., Gu, G.: Research and application of dual-camera dynamic in-line digital holography using a two-step phase-shifting cepstrum technique. Appl. Opt. 59, 3187–3195 (2020)

    Article  ADS  Google Scholar 

  • Qiu, T.H.: Electromagnetically induced holographic imaging in a hybrid artificial molecule. Opt. Exp. 23, 24537–24546 (2015)

    Article  ADS  Google Scholar 

  • Qiu, T., Xie, M., Ma, H., Zheng, C., Chen, L.: Electromagnetically Induced Quantum Holographic Imaging. Int. J. Theor. Phys. 55, 2335–2341 (2016)

    Article  MathSciNet  Google Scholar 

  • Rehman, E., Al-Khursan, A.H.: All-optical processes in double quantum dot structure. Appl. Optics 55, 7337–7344 (2016)

    Article  ADS  Google Scholar 

  • Shan, Q., Chen, Q., Chen, H.: one step rainbow holography of diffuse 3-D objects with no slit. Appl. Opt. 22, 3902–3905 (1983)

    Article  ADS  Google Scholar 

  • Villas-Boas, J.M., Govorov, A.O., Ulloa, S.E.: Coherent control of tunneling in a quantum dot molecule. Phys. Rev. B 69, 125342 (2004)

    Article  ADS  Google Scholar 

  • Wang, L.: Three-Dimensional Holographic Electromagnetic Imaging for Accessing Brain Stroke. Sensors 18, 3852 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin Habbeb Al-Khursan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hachim, F.K., Hanoon, F.H. & Al-Khursan, A.H. Quantum holography in ladder-plus-Y double quantum dot system. Opt Quant Electron 53, 18 (2021). https://doi.org/10.1007/s11082-020-02680-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02680-3

Keywords

Navigation