Skip to main content
Log in

Gas sensing performance of high-Q photonic crystal nanocavities based on a silicon-on-insulator platform

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We have proposed and theoretically analyzed the gas sensing performance of the photonic crystal (PhC) nanocavities based on a silicon-on-insulator platform. To assess the gas sensing performance of the proposed PhC nanocavities, the effect of the etch-depth of the circular air holes in the substrate on the quality factor, mode volume, and resonant wavelength have been analyzed. Numerical analysis carried out using the three-dimensional finite-difference time-domain method and filter diagonalization approach shows that the etch-depth significantly perturbs the electric field profile of the original cavity mode. By tuning this parameter, the antinodes of the electric fields are relocated to the air regions of the etch-depth, which leads to an increase in the quality factor and reduction in the mode volume. In this case, the quality factor is found to increase with increasing etch-depth, but still remains as high as 5170 with a small modal volume of \(0.95~(\lambda /n)^{3}\). In addition, using the perturbation method, we have demonstrated that the proposed PhC nanocavities possess the capability of detecting the change in the refractive index of the surrounding gas target with a high sensitivity of 322 nm/refractive index unit (RIU) and a detection limit of \(10^{-3}\,RIU\). We believe that our proposed PhC nanocavities, which exhibit excellent sensing performances, ultra-small mode volume, and a compact footprint, may offer the potential to develop on-chip sensing devices for applications in gas detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Borel, P.I., Frandsen, L.H., Harpoth, A., Kristensen, M., Nemi, T., Xing, P., Jensen, J.S., Sigmund, O.: Design and Fabrication of SOI-based photonic crystal components. In: Proceedings of 2004 6th International Conference on Transparent Optical Networks (IEEE Cat. No. 04EX804), vol. 1, pp. 271–275. IEEE (2004)

  • Caër, C., Serna-Otálvaro, S.F., Zhang, W., Le Roux, X., Cassan, E.: Liquid sensor based on high-Q slot photonic crystal cavity in silicon-on-insulator configuration. Opt. Lett. 39(20), 5792–5794 (2014)

    Article  ADS  Google Scholar 

  • Chakravarty, S., Hosseini, A., Xu, X., Zhu, L., Zou, Y., Chen, R.T.: Analysis of ultra-high sensitivity configuration in chip-integrated photonic crystal microcavity bio-sensors. Appl. Phys. Lett. 104(19), 191109 (2014)

    Article  ADS  Google Scholar 

  • Chang, Y., Dong, B., Ma, Y., Wei, J., Ren, Z., Lee, C.: Vernier effect-based tunable mid-infrared sensor using silicon-on-insulator cascaded rings. Opt. Express 28(5), 6251–6260 (2020)

    Article  ADS  Google Scholar 

  • Clerbaux, C., Hadji-Lazaro, J., Turquety, S., Mégie, G., Coheur, P.F.: Trace gas measurements from infrared satellite for chemistry and climate applications. Atmos. Chem. Phys. 3(5), 1495–1508 (2003)

    Article  ADS  Google Scholar 

  • Dong, B., Guo, X., Ho, C.P., Li, B., Wang, H., Lee, C., Luo, X., Lo, G.Q.: Silicon-on-insulator waveguide devices for broadband mid-infrared photonics. IEEE Photonics J. 9(3), 1–10 (2017)

    Article  Google Scholar 

  • Dong, B., Hu, T., Luo, X., Chang, Y., Guo, X., Wang, H., Kwong, D.L., Lo, G.Q., Lee, C.: Wavelength-flattened directional coupler based mid-infrared chemical sensor using Bragg wavelength in subwavelength grating structure. Nanomaterials 8(11), 893–906 (2018)

    Article  Google Scholar 

  • Goyal, A.K., Pal, S.: Design and simulation of high sensitive photonic crystal waveguide sensor. Optik 126(2), 240–243 (2015)

    Article  ADS  Google Scholar 

  • Hu, T., Dong, B., Luo, X., Liow, T.Y., Song, J., Lee, C., Lo, G.Q.: Silicon photonic platforms for mid-infrared applications. Photonics Res. 5(5), 417–430 (2017)

    Article  Google Scholar 

  • Joannopoulos, J.N.W., Johnson, S.G., Meade, R.D.: Photonic Crystals: Molding the Flow of Light. Princeton University Press, Princeton (2008)

    Book  Google Scholar 

  • Kassa-Baghdouche, L.: Optical properties of a point-defect nanocavity-based elliptical-hole photonic crystal for mid-infrared liquid sensing. Phys. Scr. 95(1), 015502–015510 (2019)

    Article  ADS  Google Scholar 

  • Kassa-Baghdouche, L.: High-sensitivity spectroscopic gas sensor using optimized H1 photonic crystal microcavities. JOSA B 37(11), A277–A284 (2020)

    Article  ADS  Google Scholar 

  • Kassa-Baghdouche, L., Cassan, E.: Mid-infrared refractive index sensing using optimized slotted photonic crystal waveguides. Photonics Nanostruct. Fundam. Appl. 28, 32–36 (2018a)

    Article  ADS  Google Scholar 

  • Kassa-Baghdouche, L., Cassan, E.: High efficiency slotted photonic crystal waveguides for the determination of gases using mid-infrared spectroscopy. Instrum. Sci. Technol. 46(5), 534–544 (2018b)

    Article  Google Scholar 

  • Kassa-Baghdouche, L., Cassan, E.: Sensitivity analysis of ring-shaped slotted photonic crystal waveguides for mid-infrared refractive index sensing. Opt. Quant. Electron. 51(10), 328–339 (2019)

    Article  Google Scholar 

  • Kassa-Baghdouche, L., Cassan, E.: Mid-infrared gas sensor based on high-Q/V point-defect photonic crystal nanocavities. Opt. Quantum Electron. 52(5), 260–273 (2020)

  • Kassa-Baghdouche, L., Boumaza, T., Bouchemat, M.: Planar photonic crystal nanocavities with symmetric cladding layers for integrated optics. Opt. Eng. 53(12), 127107 (2014)

    Article  ADS  Google Scholar 

  • Kassa-Baghdouche, L., Boumaza, T., Cassan, E., Bouchemat, M.: Enhancement of Q-factor in SiN-based planar photonic crystal L3 nanocavity for integrated photonics in the visible-wavelength range. Optik 126(22), 3467–3471 (2015a)

    Article  ADS  Google Scholar 

  • Kassa-Baghdouche, L., Boumaza, T., Bouchemat, M.: Optimization of q-factor in nonlinear planar photonic crystal nanocavity incorporating hybrid silicon/polymer material. Phys. Scr. 90(6), 065504–065511 (2015b)

    Article  ADS  Google Scholar 

  • Kassa-Baghdouche, L., Boumaza, T., Bouchemat, M.: Optical properties of point-defect nanocavity implemented in planar photonic crystal with various low refractive index cladding materials. Appl. Phys. B 121(3), 297–305 (2015c)

    Article  ADS  Google Scholar 

  • Lin, H., Luo, Z., Gu, T., Kimerling, L.C., Wada, K., Agarwal, A., Hu, J.: Mid-infrared integrated photonics on silicon: a perspective. Nanophotonics 7(2), 393–420 (2017)

    Article  Google Scholar 

  • Mandelshtam, V.A., Taylor, H.S.: Harmonic inversion of time signals and its applications. J. Chem. Phys. 107(17), 6756–6769 (1997)

    Article  ADS  Google Scholar 

  • Oskooi, A.F., Roundy, D., Ibanescu, M., Bermel, P., Joannopoulos, J.D., Johnson, S.G.: MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method. Comput. Phys. Commun. 181(3), 687–702 (2010)

    Article  ADS  Google Scholar 

  • Rahman, M.G.A., Velha, P., Richard, M., Johnson N.P.: Silicon-on-insulator (SOI) nanobeam optical cavities for refractive index based sensing, In: Optical Sensing and Detection II, vol. 8439, p. 84391Q. International Society for Optics and Photonics (2012)

  • Ramirez, J.M., Elfaiki, H., Verolet, T., Besancon, C., Gallet, A., Néel, D., Hassan, K., Olivier, S., Jany, C., Malhouitre, S., et al.: III–V-on-silicon integration: from hybrid devices to heterogeneous photonic integrated circuits. IEEE J. Sel. Topics Quantum Electron. 26(2), 1–13 (2019)

    Article  Google Scholar 

  • Srinivasan, K., Painter, O.: Momentum space design of high-Q photonic crystal optical cavities. Opt. Express 10(15), 670–684 (2002)

    Article  ADS  Google Scholar 

  • Vaškevičius, K., Gabalis, M., Urbonas, D., Balčytis, A., Petruškevičius, R., Juodkazis, S.: Enhanced sensitivity and measurement range SOI microring resonator with integrated one-dimensional photonic crystal. JOSA B 34(4), 750–755 (2017)

    Article  ADS  Google Scholar 

  • Yang, D., Tian, H., Ji, Y.: The properties of lattice-shifted microcavity in photonic crystal slab and its applications for electro-optical sensor. Sens. Actuators A 171(2), 146–151 (2011)

    Article  Google Scholar 

  • Yang, D., Wang, C., Yuan, W., Wang, B., Yang, Y., Ji, Y.: Silicon on-chip side-coupled high-Q micro-cavities for the multiplexing of high sensitivity photonic crystal integrated sensors array. Opt. Commun. 374, 1–7 (2016)

    Article  ADS  Google Scholar 

  • Zhang, Y., Han, S., Zhang, S., Liu, P., Shi, Y.: High-Q and high-sensitivity photonic crystal cavity sensor. IEEE Photonics J. 7(5), 1–6 (2015)

    Google Scholar 

  • Zhou, J., Tian, H., Yang, D., Liu, Q., Ji, Y.: Integration of high transmittance photonic crystal H2 nanocavity and broadband W1 waveguide for biosensing applications based on Silicon-on-Insulator substrate. Opt. Commun. 330, 175–183 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lazhar Kassa-Baghdouche.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kassa-Baghdouche, L. Gas sensing performance of high-Q photonic crystal nanocavities based on a silicon-on-insulator platform. Opt Quant Electron 53, 33 (2021). https://doi.org/10.1007/s11082-020-02660-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02660-7

Keywords

Navigation