Skip to main content
Log in

Study of highly sensitivity metal wires assisted photonic crystal fiber based refractive index sensor

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, a photonic crystal fiber (PCF) sensor based on surface plasmon resonance is proposed for refractive index (RI) sensing with improved sensitivity and resolution. In this design, solid core PCF with three layers of holes is used. Instead of a coating metal layer, we have used two metal wires at both sides of the outside layer of fiber to originate surface plasmon resonance for detection of RI of analyte effectively. Design and analyses have been performed by a Full vectorial finite element method (FV-FEM). Metals Cu, Au, and Ag have been used as plasmonic materials that exhibit higher wavelength sensitivity 7300 nm/RIU, 6200 nm/RIU, and 6100 nm/RIU, respectively. For Cu metal, we observe maximum amplitude sensitivity 597 RIU−1 with higher resolution 1.36 × 10–5 RIU for refractive index of range 1.31–1.36. However, the average sensitivity for Cu, Au, and Ag are 4320 nm/RIU, 4275 nm/RIU, and 3950 nm/RIU, respectively. The effect of air holes along with metal wires for sensitivity is also investigated. In results, copper has provided better sensitivity as well as resolution for a long-range analyte for this proposed RI sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Akter, S., Rahmanb Md, Z., Mahmudb, S.: Highly sensitive open-channels based plasmonic biosensor in visible to near-infrared wavelength. Result Phys. 13, 102328 (2019)

    Article  Google Scholar 

  • Berenger, J.P.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114(2), 185–200 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  • Dash, J.N., Jha, R.: Graphene-based birefringent photonic crystal fiber sensor using surface plasmon resonance. IEEE Photonics Technol. Lett. 26(11), 1092–1095 (2014a)

    Article  ADS  Google Scholar 

  • Dash, J.N., Jha, R.: SPR biosensor based on polymer PCF coated with conducting metal oxide. IEEE Photonics Technol. Lett. 26(6), 595–598 (2014b)

    Article  ADS  Google Scholar 

  • Fan, Z., Li, S., Liu, Q., An, G., Chen, H., Li, J., Chao, D., Li, H., Zi, J., Tian, W.: High sensitivity of refractive index sensor based on analyte-filled photonic crystal fiber with surface plasmon resonance. IEEE Photonics J. 7(3), 1–9 (2015)

    Article  Google Scholar 

  • Guiyao, Z., Zhiyun, H., Shuguang, L., Lantian, H.: Fabrication of glass photonic crystal fibers with a Die-cast process. Appl. Opt. 45(18), 4433–4436 (2006)

    Article  ADS  Google Scholar 

  • Haider, F., Aoni, R.A., Ahmed, R., Miroshnichenko, A.E.: Highly amplitude sensitive photonic crystal fiber-based plasmonic sensor. J. Opt. Soc. Ame. B 35(11), 2816–2821 (2018)

    Article  ADS  Google Scholar 

  • Hameed, M.F.O., Alrayk, Y.K.A., Shaalan, A.A., Deeb El, W.S., Obayya, S.S.A.: Design of highly sensitive multichannel bimetallic photonic crystal fiber biosensor. J. Nanophotonics 10(4), 046016 (2016)

    Article  ADS  Google Scholar 

  • Hasan, R., Akter, S., Rifat, A.A., Rana, S., Ali, S.: A highly sensitive gold-coated photonic crystal fiber biosensor based on surface plasmon resonance. Photonics 4(1), 18 (2017)

    Article  Google Scholar 

  • Hautakorpi, M., Mattinen, M., Ludvigsen, H.: Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber. Opt. Exp. 16(12), 8427–8432 (2008)

    Article  ADS  Google Scholar 

  • Hossain, M., Maniruzzaman, Md.: Study of confinement loss in photonic crystal fiber. Proceedings International Conference on Materials. Elect. Info. Eng. ICMEIE-2015 (2015)

  • Kaur, V., Singh, S.: A dual-channel surface plasmon resonance biosensor based on a photonic crystal fber for multianalyte sensing. J. Comput. Electron. 18(1), 319–328 (2019)

    Article  Google Scholar 

  • Lee, H.W., Schmidt, M.A., Tyagi, H.K., Sempere, L.P., Russell, P.S.J.: Polarization-dependent coupling to plasmon modes on a submicron gold wire in photonic crystal fiber. Appl. Phys. Lett. 93(11), 111102 (2008)

    Article  ADS  Google Scholar 

  • Lee, B., Roh, S., Park, J.: Current status of micro- and nano-structured optical fiber sensors. Opt. Fiber Technol. 15, 209–221 (2009)

    Article  ADS  Google Scholar 

  • Liu, Y.L., Xianchao, Y., Jianquan, Y.: Tunable surface plasmon resonance sensor based on photonic crystal fiber filled with gold nano shells. Plasmonics 13, 763–770 (2018)

    Article  Google Scholar 

  • Lu, Y., Hao, C.J., Wu, B.Q., Huang, X.H., Wen, W.Q., Fu, X.Y., Yao, J.Q.: Grapefruit fiber filled with silver nanowires surface plasmon resonance sensor in aqueous environments. Sensors 12(9), 12016–12025 (2012)

    Article  Google Scholar 

  • Malinin, A.V., Zanishevskaja, A.A., Tuchin, V.V., Skibina, Y.S., Silokhin, I.Y.: Photonic crystal fibers for food quality analysis, In biophotonics: photonic solutions for better health care III. Inter. Soc. Opt. Photonics 8427, 842746 (2012)

    Google Scholar 

  • Malitson, I.H.: Inter specimen comparison of the refractive index of fused silica. JOSA 55(10), 1205–1209 (1965)

    Article  ADS  Google Scholar 

  • Mishra, S.K., Tripathi, S.N., Choudhary, V., Gupta, B.D.: SPR based fiber optic ammonia gas sensor utilizing nanocomposite film of PMMA/reduced graphene oxide prepared by in situ polymerization. Sens. Actu. B Chem. 199, 190–200 (2014)

    Article  Google Scholar 

  • Momota, M.R., Hasan, Md.R.: Hollow-core silver coated photonic crystal fiber plasmonic sensor. Opt. Mater. 76, 287–294 (2018)

    Article  ADS  Google Scholar 

  • Nivedha, S., Babu, P.R., Senthilnathan, K.: Surface plasmon resonance: physics and technology. Curr. Sci. 115(1), 56–63 (2018)

    Article  Google Scholar 

  • Olyaee, S., Taghipour, F.: Ultra-flattened dispersion hexagonal photonic crystal fiber with low confinement loss and large effective area. IET Optoelectron. 6(2), 82–87 (2012)

    Article  Google Scholar 

  • Otto, A.: Excitation of non-radiative surface plasma waves in silver by the method of frustrated total reflection. Zeit. ffir Phy. 216, 398–410 (1968)

    Article  ADS  Google Scholar 

  • Pysz, D., Kujawa, I., Stępien, R., Klimczak, M., Filipkowski, A., Franczyk, M., Kociszewski, L., Buzniak, J., Harasny, K., Buczyński, R.: Stack and draw fabrication of soft glass microstructured fiber optics. Tech. Sci. 62(4), 667–682 (2014)

    Google Scholar 

  • Rahman, B.M., Davies, J.B.: Finite-element analysis of optical and microwave waveguide problems. IEEE Trans. Micro. Theory Tech. 32(1), 20–28 (1984)

    Article  ADS  Google Scholar 

  • Rakic, A.D., Djurisic, A.B., Elazar, J.M., Majewski, M.L.: Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 37(22), 5271–5283 (1998)

    Article  ADS  Google Scholar 

  • Rifat, A.A., Mahdiraji, G.A., Chow, D.M., Shee, Y.G., Ahmed, R., Adikan, F.R.M.: Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core. Sensors 15, 11499–11510 (2015)

    Article  Google Scholar 

  • Rifat, A.A., Mahdiraji, G.A., Sua, Y.M., Ahmed, R., Shee, Y.G., Adikan, F.R.M.: Highly sensitive multi-core flat fiber surface plasmon resonance refractive index sensor. Opt. Exp. 24(3), 2485–2495 (2016)

    Article  ADS  Google Scholar 

  • Saitoh, K., Koshiba, M.: Numerical modeling of photonic crystal fibers. J. Light. Technol. 23(11), 3580–3590 (2005)

    Article  ADS  Google Scholar 

  • Santos, D.F., Guerreiro, A., Baptista, J.M.: SPR micro structured D-type optical fiber sensor configuration for refractive index measurement. IEEE Sens. J. 15(10), 5472–5477 (2015)

    Article  ADS  Google Scholar 

  • Sharma, A.K., Jha, R., Gupta, B.D.: Fiber-optic sensors based on surface plasmon resonance. A comprehensive review. IEEE Sens. J. 7(8), 1118–1129 (2007)

    Article  ADS  Google Scholar 

  • Tan, Z., Li, X., Chen, Y., Fan, P.: Improving the sensitivity of fiber surface plasmon resonance sensor by filling liquid in a hollow-core photonic crystal fiber. Plasmonics 9(1), 167–173 (2014)

    Article  Google Scholar 

  • Xue, J., Li, S., Xiao, Y., Qin, W., Xin, X., Zhu, X.: Polarization filter characters of the gold-coated and the liquid-filled photonic crystal fiber based on surface plasmon resonance. Opt. Exp. 21(11), 13733–13740 (2013)

    Article  ADS  Google Scholar 

  • Yan, X., Li, B., Cheng, T., Li, S.: Analysis of high sensitivity photonic crystal fiber sensor based on surface plasmon resonance of refractive indexes of liquids. Sensors 18(9), 2922 (2018)

    Article  Google Scholar 

  • Yang, X., Lu, Y., Liu, B., Yao, J.: Analysis of graphene-based photonic crystal fiber sensor using birefringence and surface plasmon resonance. Plasmonics 12(2), 489–496 (2017)

    Article  Google Scholar 

  • Yasli, A., Ademgil, H.: Geometrical comparison of photonic crystal fiber-based surface plasmon resonance sensors. Opt. Eng. 57(3), 30801–30810 (2018)

    Article  Google Scholar 

  • Yu, X., Zhang, Y., Kwok, Y.C., Shum, P.: Highly sensitive photonic crystal fiber-based absorption spectroscopy. Sens. Actu. B Chem. 145(1), 110–113 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

Umang Ramani is thankful to MHRD India for providing fellowship in a form of teaching assistantship at Indian Institute of Technology (BHU) Varanasi and Hemant Kumar is thankful to CSIR, India for providing junior research fellowship grant. One of the authors (Bipin K. Singh) is thankful to The University Grants Commission (UGC), India, for providing financial support in the form of Dr. D. S. Kothari Postdoctoral Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen C. Pandey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramani, U., Kumar, H., Singh, B.K. et al. Study of highly sensitivity metal wires assisted photonic crystal fiber based refractive index sensor. Opt Quant Electron 52, 521 (2020). https://doi.org/10.1007/s11082-020-02658-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02658-1

Keywords

Navigation