Skip to main content
Log in

N-soliton solutions and the Hirota conditions in (2+1)-dimensions

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We compute N-soliton solutions and analyze the Hirota N-soliton conditions, in (2+1)-dimensions, based on the Hirota bilinear formulation. An algorithm to check the Hirota conditions is proposed by comparing degrees of the polynomials generated from the Hirota function in N wave vectors. A weight number is introduced while transforming the Hirota function to achieve homogeneity of the resulting polynomial. Applications to three integrable equations: the (2+1)-dimensional KdV equation, the Kadomtsev–Petviashvili equation, the (2+1)-dimensional Hirota–Satsuma–Ito equation, are made, thereby providing proofs of the existence of N-soliton solutions in the three model equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ablowitz, M.J., Segur, H.: Solitons and the Inverse Scattering Transform. SIAM, Philadelphia (1981)

    Book  Google Scholar 

  • Biondini, G., Kodama, Y.: On a family of solutions of the Kadomtsev–Petviashvili equation which also satisfy the Toda lattice hierarchy. J. Phys. A Math. Gen. 36, 10519–10536 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  • Boiti, M., Leon, J., Manna, M., Pempinelli, F.: On the spectral transform of Korteweg–de Vries equation in two spatial dimensions. Inverse Probl. 2, 271–279 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  • Deconinck, B.: Canonical variables for multiphase solutions of the KP equation. Stud. Appl. Math. 104, 229–292 (2000)

    Article  MathSciNet  Google Scholar 

  • Hasegawa, A.: Optical Solitons in Fibers. Springer-Verlag: Berlin Heidelberg and AT & T Bell Laboratories (1989 and 1990)

  • Hietarinta, J.: A search for bilinear equations passing Hirota’s three-soliton condition. I. KdV-type bilinear equations. J. Math. Phys. 28, 1732–1742 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  • Hietarinta, J.: Introduction to the Hirota bilinear method. In: Kosmann-Schwarzbach, Y., Grammaticos, B., Tamizhmani, K.M. (eds.) Integrability of Nonlinear Systems, pp. 95–103. Springer, Berlin (1997)

    Chapter  Google Scholar 

  • Hirota, R.: Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 27, 1192–1194 (1971)

    Article  ADS  Google Scholar 

  • Hirota, R.: A new form of Bäcklund transformations and its relation to the inverse scattering problem. Prog. Theor. Phys. 52, 1498–1512 (1974)

    Article  ADS  Google Scholar 

  • Hirota, R.: Direct methods in soliton theory. In: Bullough, R.K., Caudrey, P. (eds.) Solitons, pp. 157–176. Springer, Berlin, Heidelberg (1980)

    Chapter  Google Scholar 

  • Hirota, R.: Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  • Hirota, R., Satsuma, J.: \(N\)-soliton solutions of model equations for shallow water waves. J. Phys. Soc. Jpn. 40, 611–612 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  • Hosseini, K., Ma, W.X., Ansari, R., Mirzazadeh, M., Pouyanmehr, R., Samadani, F.: Evolutionary behavior of rational wave solutions to the (4+1)-dimensional Boiti—Leon–Manna–Pempinelli equation. Phys. Scr. 95, 065208 (2020)

    Article  ADS  Google Scholar 

  • Inc, M., Hosseini, K., Samavat, M., Mirzazadeh, M., Eslami, M., Moradi, M., Baleanu, D.: \(N\)-wave and other solutions to the B-type Kadomtsev–Petviashvili equation. Therm. Sci. 23(Suppl. 6), S2027–S2035 (2019)

    Article  Google Scholar 

  • Ito, M.: An extension of nonlinear evolution equations of the K-dV (mK-dV) type to higher orders. J. Phys. Soc. Jpn. 49, 771–778 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  • Kadomtsev, B.B., Petviashvili, V.I.: On the stability of solitary waves in weakly dispersive media. Sov. Phys. Dokl. 15, 539–541 (1970)

    ADS  MATH  Google Scholar 

  • Liu, W., Wazwaz, A.-M., Zheng, X.X.: High-order breathers, lumps, and semi-rational solutions to the (2+1)-dimensional Hirota–Satsuma–Ito equation. Phys. Scr. 94, 075203 (2019)

    Article  ADS  Google Scholar 

  • Ma, W.X.: Generalized bilinear differential equations. Stud. Nonlinear Sci. 2, 140–144 (2011)

    Google Scholar 

  • Ma, W.X.: Bilinear equations, Bell polynomials and linear superposition principle. J. Phys Conf. Ser. 411, 012021 (2013)

    Article  Google Scholar 

  • Ma, W.X.: Bilinear equations and resonant solutions characterized by Bell polynomials. Rep. Math. Phys. 72, 41–56 (2013b)

    Article  ADS  MathSciNet  Google Scholar 

  • Ma, W.X.: Trilinear equations, Bell polynomials, and resonant solutions. Front. Math. China 8, 1139–1156 (2013c)

    Article  MathSciNet  Google Scholar 

  • Ma, W.X., Fan, E.G.: Linear superposition principle applying to Hirota bilinear equations. Comput. Math. Appl. 61, 950–959 (2011)

    Article  MathSciNet  Google Scholar 

  • Ma, W.X., Zhang, Y., Tang, Y.N., Tu, J.Y.: Hirota bilinear equations with linear subspaces of solutions. Appl. Math. Comput. 218, 7174–7183 (2012)

    MathSciNet  MATH  Google Scholar 

  • Newell, A.C., Zeng, Y.B.: The Hirota conditions. J. Math. Phys. 27, 2016–2021 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  • Nizhnik, L.: Integration of multidimensional nonlinear equations by the inverse problem method. Sov. Phys. Dolk. 25, 706–708 (1981)

    MATH  Google Scholar 

  • Novikov, S.P., Manakov, S.V., Pitaevskii, L.P., Zakharov, V.E.: Theory of Solitons: The Inverse Scattering Method. Consultants Bureau, New York (1984)

    MATH  Google Scholar 

  • Satsuma, J.: \(N\)-soliton solution of the two-dimensional Kortweg–de Vries equation. J. Phys. Soc. Jpn. 40, 286–290 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  • Sawada, K., Kotera, T.: A method for finding \(N\)-soliton solutions of the K.d.V. equation and K.d.V.-like equation. Prog. Theor. Phys. 51, 1355–1367 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  • Veselov, A.P., Novikov, S.P.: Finite-zone, two-dimensional, potential Schrödinger operators. Explicit formulas and evolution equations. Sov. Math. Dokl. 30, 588–591 (1984)

    MATH  Google Scholar 

  • Yang, X.Y., Zhang, Z., Li, W.T., Li, B.: Breathers, lumps and hybrid solutions of the (2+1)-dimensional Hirota–Satsuma–Ito equation. Rocky Mountain J. Math. 50, 319–335 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work was supported in part by NSFC under the Grants 11975145 and 11972291. The author would also like to thank Ahmed Ahmed, Alle Adjiri, Yushan Bai, Liyuan Ding, Yehui Huang, Xing Lü, Solomon Manukure, Morgan McAnally, Fudong Wang and Yong Zhang for their valuable discussions

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Xiu Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, WX. N-soliton solutions and the Hirota conditions in (2+1)-dimensions. Opt Quant Electron 52, 511 (2020). https://doi.org/10.1007/s11082-020-02628-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02628-7

Keywords

Mathematics Subject Classification

Navigation