Synthesis of gallium oxide via interaction of gallium with iodide pentoxide in plasma

Abstract

The promising fields of gallium oxide application are the production of hybrid cars, electrical equipment of high-power, ultraviolet radiation sensors and uninterruptible power supplies. However, the main factor hindering its massive commercial use is the lack of synthesis technologies, that should be cheap, reproducible, and scalable. In this work we develop a novel plasma-chemical method of Ga2O3 synthesis. The high-purity elemental gallium was used as the precursor, which was delivered by argon flow to the reaction zone, where the interaction with iodide pentoxide took place. RF (40.68 MHz) non-equilibrium plasma discharge at low pressure (0.1 Torr) was employed for the initiation of interactions between precursors. Optical Emission Spectroscopy in tandem with quantum-chemical calculations allowed us to find out the reactive species formed in the plasma discharge. The properties of the solid phase obtained were studied as well.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Areán, C.O., Bellan, A.L., Mentruit, M.P., Delgado, M.R., Palomino, G.T.: Preparation and characterization of mesoporous γ-Ga2O3. Microporous Mesoporous Mater. 40, 35–42 (2000)

    Article  Google Scholar 

  2. Binions, R., Carmalt, C.J., Parkin, I.P., Pratt, K.F.E., Shaw, G.A.: Gallium oxide thin films from the atmospheric pressure chemical vapor deposition reaction of gallium trichloride and methanol. Chem. Mater. 16(12), 2489–2493 (2004)

    Article  Google Scholar 

  3. Böhm, J.: Über Galliumoxyd und-hydroxyd. Angew. Chem. 53, 131 (1940)

    Article  Google Scholar 

  4. Chase, M.W.: NIST-JANAF thermochemical tables for the iodine oxides. J. Phys. Chem. Ref. Data 25, 1297–1340 (1996)

    ADS  Article  Google Scholar 

  5. Cheng, Y., Liang, H., Shen, R., Xia, X., Wang, B., Liu, Y., Song, S., Liu, Y., Zhang, Z., Du, G.: Band gap broadening and photoluminescence properties investigation in Ga2O3 polycrystal. J. Mater. Sci. Mater. Electron. 24, 2750–2754 (2013)

    Article  Google Scholar 

  6. Delgado, M.R., Areán, D.O.: Surface chemistry and pore structure of β-Ga2O3. Mater. Lett. 57, 2292–2297 (2003)

    Article  Google Scholar 

  7. Fleischer, M., Meixner, H.: Gallium oxide thin films: a new material for high-temperature oxygen sensors. Sens. Actuators B: Chem. 4(3–4), 437–441 (1991)

    Article  Google Scholar 

  8. Galazka, Z.: β-Ga2O3 for wide-bandgap electronics and optoelectronic. Semicond. Sci. Technol. (2018). https://doi.org/10.1088/1361-6641/aadf78

    Article  Google Scholar 

  9. Galvez, O., Gomez Martin, J.C., Gomez, P.C., Saiz-Lopez, A., Pacios, L.F.: A theoretical study on the formation of iodine oxide aggregates and monohydrates. Phys. Chem. Chem. Phys. 15, 15575–15583 (2013)

    Article  Google Scholar 

  10. Gomez Martin, J.C., Galvez, O., Baeza-Romero, M.T., Ingham, T., Plane, J.M.C., Blitz, M.A.: On the mechanism of iodine oxide particle formation. Phys. Chem. Chem. Phys. 15, 15612–15622 (2013)

    Article  Google Scholar 

  11. Granqvist, C.G.: Electrochromic materials: out of a niche. Nat. Mater. 5(2), 89–90 (2006)

    ADS  Article  Google Scholar 

  12. He, H., Orlando, R., Blanco, M.A., Pandey, R., Amzallag, E., Baraille, I., Rérat, M.: First-principles study of the structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases. Phys. Rev. B 74, 195123-1–195123-8 (2006)

    ADS  Google Scholar 

  13. Kaltsoyannis, N., Plane, J.M.C.: Quantum chemical calculations on a selection of iodine-containing species (IO, OIO, INO3, (IO)2, I2O3, I2O4 and I2O5) of importance in the atmosphere. Phys. Chem. Chem. Phys. 10, 1723–1733 (2008)

    Article  Google Scholar 

  14. Kukushkin, S.A., Osipov, A.V., Osipova, E.V., Feoktistov, N.A., Nikolaev, V.I., Pechnikov, A.I.: Epitaxial gallium oxide on a SiC/Si substrate. Phys. Solid State 58(9), 1876–1881 (2016)

    ADS  Article  Google Scholar 

  15. Liu, Z., Li, P.-G., Yusong, Z., Tang, W.-H.: Review of gallium oxide-based field-effect transistors and Schottky barrier diodes. Chin. Phys. B 28(1), 017105 (2019). https://doi.org/10.1088/1674-1056/28/1/017105

    ADS  Article  Google Scholar 

  16. Logunov, A., Mochalov, L., Gogova, D., Vorotyntsev, V.: Synthesis of gallium oxide from the elements at rf plasma discharge in the argon-oxygen mixture. Int. Conf. Transp. Opt. Netw. (2019). https://doi.org/10.1109/icton.2019.8840331

    Article  Google Scholar 

  17. Marie, P., Portier, X., Cardin, J.: Growth and characterization of gallium oxide thin films by radiofrequency magnetron sputtering. Physica Status Solid A 205(8), 1943–1946 (2008)

    ADS  Article  Google Scholar 

  18. Marwoto, P., Sugianto, S., Wibowo, E.: Growth of europium-doped gallium oxide (Ga2O3:Eu) thin films deposited by homemade DC magnetron sputtering. J. Theor. Appl. Phys. 6, 17 (2012). https://doi.org/10.1186/2251-7235-6-17

    ADS  Article  Google Scholar 

  19. McFiggans, G., Plane, J.M.C., Allan, B.J., Carpenter, L.J., Coe, H., O’Dowd, C.: A modeling study of iodine chemistry in the marine boundary layer. J. Geophys. Res. Atmos. 105, 14371–14385 (2000)

    ADS  Article  Google Scholar 

  20. Milosavljevic, V., Ellingboe, A.R., Daniels, S.: Influence of plasma chemistry on oxygen triplets. Eur. Phys. J. D 64, 437–445 (2011)

    ADS  Article  Google Scholar 

  21. Minami, T.: Oxide thin-film electroluminescent devices and materials. Solid State Electron. 47, 2237–2243 (2003). https://doi.org/10.1016/S0038-1101(03)00204-1

    ADS  Article  Google Scholar 

  22. Mochalov, L., Logunov, A., Vorotyntsev, A., Vorotyntsev, V., Mashin, A.: Purification of tellurium through thermal decomposition of plasma prepared tellurium hydride. Sep. Purif. Technol. 204, 276–280 (2018). https://doi.org/10.1016/j.seppur.2018.05.009

    Article  Google Scholar 

  23. Mochalov, L., Logunov, A., Vorotyntsev, V.: Structural and optical properties of As-Se-Te chalcogenide films prepared by plasma-enhanced chemical vapor deposition. Mater. Res. Exp. 6(5), 056407 (2019a). https://doi.org/10.1088/2053-1591/ab014d

    Article  Google Scholar 

  24. Mochalov, L., Logunov, A., Sazanova, T., Vorotyntsev, V.: New generation of materials for the near-mid IR sensors based on lead chalcogenides. Int. Conf. Transp. Opt. Netw. 2019, 8839997 (2019b). https://doi.org/10.1109/ICTON.2019.883999

    Article  Google Scholar 

  25. Mochalov, L., Logunov, A., Kitnis, A., Vorotyntsev, V.: Plasma-chemistry of arsenic selenide films: relationship between film properties and plasma power. Plasma Chem. Plasma Process. 40(1), 407–421 (2020a). https://doi.org/10.1007/s11090-019-10035-4

    Article  Google Scholar 

  26. Mochalov, L., Logunov, A., Markin, A., Kitnis, A., Vorotyntsev, V.: Characteristics of the Te-based chalcogenide films dependently on the parameters of the PECVD process. Opt. Quant. Electron. 52(4), 197 (2020b). https://doi.org/10.1007/s11082-020-02312-w

    Article  Google Scholar 

  27. Mochalov, L., Logunov, A., Kitnis, A., Prokhorov, I., Kovalev, A., Yunin, P., Gogova, D., Vorotyntsev, V.: Plasma-chemical purification of iodine. Sep. Purif. Technol. 238, 116446 (2020c). https://doi.org/10.1016/j.seppur.2019.116446

    Article  Google Scholar 

  28. Mochalov, L., Logunov, A., Sazanova, T., Gogova, D., Zelentsov, S., Yunin, P., Prokhorov, I., Malyshev, V., Vorotyntsev, V.: Gallium oxide films prepared by oxidation of gallium in oxygen-hydrogen plasma. Int. Conf. Transp. Opt. Netw. 2020, 9203286 (2020d). https://doi.org/10.1109/ICTON51198.2020.9203286

    Article  Google Scholar 

  29. Mochalov, L., Logunov, A., Sazanova, T., Kulikov, A., Rafailov, E., Zelentsov, S., Vorotyntsev, V.: Zinc oxide nanostructured materials prepared by PECVD as a platform for biosensors. In: 2020 22nd international conference on transparent optical networks (ICTON), Bari, Italy, pp. 1–4 (2020). https://doi.org/10.1109/ICTON51198.2020.9203466

  30. Mochalov, L., Dorosz, D., Kochanowicz, M., Logunov, A., Letnianchik, A., Starostin, N., Zelentsov, S., Boreman, G., Vorotyntsev, V.: Optical emission spectroscopy of lead sulfide films plasma deposition. Spectrochim. Acta—Part A: Mol. Biomol. Spectrosc. 241, 118629 (2020f). https://doi.org/10.1016/j.saa.2020.118629

    Article  Google Scholar 

  31. Murakami, H., Nomura, K., Goto, K., Sasaki, K., Kawara, K., Thieu, Q.T., Togashi, R., Kumagai, Y., Higashiwaki, M., Kuramata, A.: Homoepitaxial growth of β-Ga2O3 layers by halide vapor phase epitaxy. Appl. Phys. Exp. 8, 015503 (2015). https://doi.org/10.7567/apex.8.015503

    ADS  Article  Google Scholar 

  32. Ortiza, A., Alonso, J.C., Andrade, E., Urbiola, C.: Structural and optical characteristics of gallium oxide thin films deposited by ultrasonic spray pyrolysis. J. Electrochem. Soc. 148(2), F26–F29 (2001)

    Article  Google Scholar 

  33. Pearton, S.J., Yang, J., Cary, P.H., Ren, F., Kim, J., Tadjer, M.J., Mastro, M.A.: A review of Ga2O3 materials, processing, and devices. Appl. Phys. Rev. 5, 011301 (2018). https://doi.org/10.1063/1.5006941

    ADS  Article  Google Scholar 

  34. Petukhov, A.N., Shablykin, D.N., Vorotyntsev, A.V., Vorotyntsev, I.V., Vorotyntsev, V.M.: Effects of association with impurities in ammonia purification. Fluid Phase Equilib. 406, 163–167 (2015). https://doi.org/10.1016/j.fluid.2015.07.034

    Article  Google Scholar 

  35. Saunders, R.W., Plane, J.M.C.: Formation pathways and composition of iodine oxide ultra-fine particles. Environ. Chem. 2, 299–303 (2005)

    Article  Google Scholar 

  36. Stepanov, S.I., Nikolaev, V.I., Bougrov, V.E., Romanov, A.E.: Gallium oxide: properties and applications: a review. Rev. Adv. Mater. 44, 63–86 (2016)

    Google Scholar 

  37. Tassev, V., Bliss, D., Suscavage, M., Paduano, Q.S., Wang, S.-Q., Bouthillette, L.: Iodine vapor phase growth of GaN: dependence of epitaxial growth rate on process parameters. J. Cryst. Growth 235(1–4), 140–148 (2002)

    ADS  Article  Google Scholar 

  38. Vorotyntsev, V.M., Malyshev, V.M., Mochalov, L.A., Petukhov, A.N., Salnikova, M.E.: The capture of nanosized particles by the directional crystallization of sulfur. Sep. Purif. Technol. 199, 214–221 (2018a). https://doi.org/10.1016/j.seppur.2018.01.065

    Article  Google Scholar 

  39. Vorotyntsev, A.V., Petukhov, A.N., Makarov, D.A., Sazanova, T.S., Razov, E.N., Nyuchev, A.V., Mochalov, L.A., Markov, A.N., Kulikov, A.D., Vorotyntsev, V.M.: Supported ionic liquid-like phases based on CMS/DVB with different NR3 cations as catalysts for the chlorosilanes disproportionation. Appl. Catal. B 239, 102–113 (2018b). https://doi.org/10.1016/j.apcatb.2018.07.069

    Article  Google Scholar 

  40. Zatsarinny, O., Bartschat, K., Garcia, G., Blanco, F., Hargreaves, L.R., Jones, D.B., Murrie, R., Brunton, J.R., Brunger, M.J., Hoshino, M., Buckman, S.J.: Electron-collision cross sections for iodine. Phys. Rev. A 83, 042702 (2011)

    ADS  Article  Google Scholar 

  41. Zatsepin, D.A., Boukhvalov, D.W., Zatsepin, A.F., Kuznetsova, Y.A., Gogova, D.S., Shur, V.Y., Esin, A.A.: Atomic structure, electronic states, and optical properties of epitaxially grown β-Ga2O3 layers. Superlatt. Microstruct. 120, 90–100 (2018)

    ADS  Article  Google Scholar 

  42. Zinkevich, M., Morales, F.M., Nitsche, H., Ahrens, M., Rühle, M., Aldinger, F., Metallk, Z.: Microstructural and thermodynamic study of γ-Ga2O3. Zeitschrift für Metallkunde 95, 756–762 (2004). https://doi.org/10.3139/146.018018

    Article  Google Scholar 

Download references

Acknowledgements

The reported study was supported by Russian Science Foundation, Grant № 19-19-00510 “Development of a Novel Plasma Enhanced Vapor Phase Method for Deposition of Gallium Oxide Films for Applications in High-power Electronics and in UV Schottky Diodes”.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Leonid Mochalov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mochalov, L., Logunov, A., Gogova, D. et al. Synthesis of gallium oxide via interaction of gallium with iodide pentoxide in plasma. Opt Quant Electron 52, 510 (2020). https://doi.org/10.1007/s11082-020-02625-w

Download citation

Keywords

  • Gallium oxide
  • Plasma synthesis
  • Optical emission spectroscopy