Skip to main content
Log in

High-sensitive measurements of refractive-index and magnetic-field based on liquid-infiltrated photonic crystal fiber with an elliptically-shaped core

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A high-sensitive refractive index (RI) measuring method is proposed through the combined use of elliptical core photonic crystal fiber (PCF) and Sagnac interferometer. The sensing performance of the designed structure are studied theoretically using the finite element method. We analyze the phase birefringence and group birefringence to obtain the dependence of RI sensitivity on the operable wavelength λ. The RI sensitivity can be enhanced 10–20× by introducing a liquid-filled elliptical hole into the fiber core. Additionally, the single-core structure can convert to twin-core case just through decreasing the RI of filling liquid, and the spectral response is adjustable by changing main structural parameters. The simulation results show that the average sensitivity is about 1,14,967 nm/RIU within the RI range of 1.463–1.467, which corresponds to a resolution of 1.74 × 10−6 RIU. Finally, the sensing method is applied to magnetic-field measurement as an example, and the magnetic-field sensitivity can reach up to 3.45 \({\text{nm/Oe}}\) within the range of 89.9–271.0 \({\text{Oe}}\). The measurement principle also applicable to other sensing fields, and the proposed structure is insensitive to fiber bending without fabrication complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Chen, H., Li, S., Li, J., et al.: Magnetic field sensor based on magnetic fluid selectively infilling photonic crystal fibers. IEEE Photonics Technol. Lett. 27(7), 717–720 (2015)

    Article  ADS  Google Scholar 

  • Chen, W., Thoreson, M.D., Ishii, S., et al.: Ultra-thin ultra-smooth and low-loss silver films on a germanium wetting layer. Opt. Express 18(5), 5124–5134 (2010)

    Article  ADS  Google Scholar 

  • Chen, Y.F., Yang, S.Y., Tse, W.S., et al.: Thermal effect on the field-dependent refractive index of the magnetic fluid film. Appl. Phys. Lett. 82(20), 3481–3483 (2003)

    Article  ADS  Google Scholar 

  • Cordeiro, C.M.B., Matos, C.J.S.D., Santos, E.M.D., et al.: Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre. Meas. Sci. Technol. 18(10), 3075–3081 (2007)

    Article  ADS  Google Scholar 

  • De, M., Singh, V.K.: Magnetic fluid infiltrated dual core photonic crystal fiber based highly sensitive magnetic field sensor. Opt. Laser Technol. 106, 61–68 (2018)

    Article  ADS  Google Scholar 

  • Gangwar, R.K., Bhardwaj, V., Singh, V.K.: Magnetic field sensor based on selectively magnetic fluid infiltrated dual-core photonic crystal fiber. Opt. Eng. 55(2), 02611 (2016)

    Article  Google Scholar 

  • Han, T., Liu, Y., Wang, Z., Guo, J., Wu, Z., Luo, M., et al.: Control and design of fiber birefringence characteristics based on selective-filled hybrid photonic crystal fibers. Opt. Express 22(12), 15002–15016 (2014)

    Article  ADS  Google Scholar 

  • Hasan, M.R., Akter, S., Ahmed, K., et al.: Plasmonic refractive index sensor employing niobium nanofilm on photonic crystal fiber. IEEE Photonics Technol. Lett. 30(4), 315–318 (2017)

    Article  ADS  Google Scholar 

  • He, H., Wang, L., Yin, L., et al.: Transverse load sensing based on a dual-core photonic crystal fiber. Opt.—Int. J. Light Electron Opt. 126(23), 4574–4576 (2015)

    Article  Google Scholar 

  • Jiao, S., Gu, S., Fang, H., et al.: Analysis of dual-core photonic crystal fiber based on surface plasmon resonance sensor with segmented silver film. Plasmonics 14(3), 685–693 (2019)

    Article  Google Scholar 

  • Kedenburg, S., Gissibl, T., Steinle, T., et al.: Towards integration of a liquid-filled fiber capillary for supercontinuum generation in the 12–24 μm range. Opt. Express 23(7), 8281–8289 (2015)

    Article  ADS  Google Scholar 

  • Li, J., et al.: Novel magnetic field sensor based on magnetic fluids infiltrated dual-core photonic crystal fibers. Opt. Fiber Technol. 20, 100–105 (2014)

    Article  ADS  Google Scholar 

  • Li, X.G., Zhou, X., Zhao, Y., et al.: Multi-modes interferometer for magnetic field and temperature measurement using photonic crystal fiber filled with magnetic fluid. Opt. Fiber Technol. 41, 1–6 (2018)

    Article  ADS  Google Scholar 

  • Li, T., Zhu, L., Yang, X., Lou, X., Yu, L.: A refractive index sensor based on H-shaped photonic crystal fibers coated with Ag-graphene layers. Sensors 20, 741 (2020)

    Article  Google Scholar 

  • Liu, Q., Li, S.G., Chen, H.: Enhanced sensitivity of temperature sensor by a PCF with a defect core based on Sagnac interferometer. Sens Actuators B Chem. 254, 636–641 (2018)

    Article  Google Scholar 

  • Liu, Q., Li, S., Dou, C., et al.: Defected-core photonic crystal fiber magnetic field sensor based on Sagnac interferometer. Appl. Phys. B 123(3), 65 (2017)

    Article  ADS  Google Scholar 

  • Liu, Q., Li, S.G., Wang, X.: Sensing characteristics of a MF-filled photonic crystal fiber Sagnac interferometer for magnetic field detecting. Sensors and Actuators B: Chemical. 242, 949–955 (2016)

    Article  Google Scholar 

  • Liu, H., Tan, C., Zhu, C., et al.: Simultaneous measurement of temperature and magnetic field based on directional resonance coupling in photonic crystal fibers. Opt. Commun. 391, 111–115 (2017)

    Article  ADS  Google Scholar 

  • Luo, L., Pu, S., Tang, J., et al.: Highly sensitive magnetic field sensor based on microfiber coupler with magnetic fluid. Appl. Phys. Lett. 106(19), 193507 (2015)

    Article  ADS  Google Scholar 

  • Ma, J., Yu, H.H., Jiang, X., et al.: High-performance temperature sensing using a selectively filled solid-core photonic crystal fiber with a central air-bore. Opt. Express 25(8), 9406–9415 (2017)

    Article  ADS  Google Scholar 

  • Portosi, V., Laneve, D., Falconi, M.C., Prudenzano, F.: Advances on photonic crystal fiber sensors and applications. Sensors 1892, 19 (2019)

    Google Scholar 

  • Rifat, A.A., Mahdiraji, G.A., Ahmed, R., et al.: Copper-graphene-based photonic crystal fiber plasmonic biosensor. IEEE Photonics J. 8(1), 1–8 (2015)

    Article  Google Scholar 

  • Saitoh, K., Koshiba, M.: Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers. IEEE J. Quantum Electron. 38(7), 927–933 (2002)

    Article  ADS  Google Scholar 

  • Shi, M., Li, S., Chen, H.: A high-sensitivity temperature sensor based on Sagnac interferometer employing photonic crystal fiber fully filled with ethanol. Appl. Phys. B 124(6), 94 (2018)

    Article  ADS  Google Scholar 

  • Vera, E.R., Cordeiro, C.M.B., Torres, P.: High sensitive temperature sensor using Sagnac loop interferometer based on side-hole photonic crystal fiber filled with metal. Appl. Opt. 56(2), 156–162 (2017)

    Article  ADS  Google Scholar 

  • Vu, N.H., Hwang, I.K., Lee, Y.H.: Bending loss analyses of photonic crystal fibers based on the finite-difference time-domain method. Opt. Lett. 33(2), 119–121 (2008)

    Article  ADS  Google Scholar 

  • Wang, J., Pei, L., Weng, S., et al.: A tunable polarization beam splitter based on magnetic fluids-filled dual-core photonic crystal fiber. IEEE Photonics J. 9(1), 1–10 (2017)

    Google Scholar 

  • Wu, J.J., Li, S., Wang, X., et al.: Ultrahigh sensitivity refractive index sensor of a D-shaped PCF based on surface plasmon resonance. Appl. Opt. 57(15), 4002–4007 (2018)

    Article  ADS  Google Scholar 

  • Yang, H.Z., Ahmad, H., Lim, K.S., et al.: Mach–Zehnder interferometric magnetic field sensor based on a photonic crystal fiber and magnetic fluid. Appl. Opt. 57(9), 2050–2056 (2018)

    Article  ADS  Google Scholar 

  • Zhang, S., Li, J., Li, S., et al.: Surface plasmon resonance sensor based on D-shaped photonic crystal fiber with two micro-openings. J. Phys. D Appl. Phys. 51(30), 305104 (2018)

    Article  ADS  Google Scholar 

  • Zhao, T., Lou, S., Wang, X., et al.: Simultaneous measurement of curvature, strain and temperature using a twin-core photonic crystal fiber-based sensor. Sensors 18(7), 2145 (2018)

    Article  Google Scholar 

  • Zhao, Y., Wu, D., Lv, R.Q., et al.: Magnetic field measurement based on the Sagnac interferometer with a ferrofluid-filled high-birefringence photonic crystal fiber. IEEE Trans. Instrum. Meas. 65(6), 1503–1507 (2016)

    Article  Google Scholar 

  • Zu, P., Chan, C.C., Koh, G.W., Lew, W.S., Jin, Y., Liew, H.F., et al.: Enhancement of the sensitivity of magneto-optical fiber sensor by magnifying the birefringence the birefringence of magnetic fluid film with Loyt–Sagnac interferometer. Sens. Actuators B Chem. 191, 19–23 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

Supported by “the Fundamental Research Funds for the Central Universities” (Grant No. 2019GF05, China University of Mining and Technology).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Wang, H., Zhang, Y. et al. High-sensitive measurements of refractive-index and magnetic-field based on liquid-infiltrated photonic crystal fiber with an elliptically-shaped core. Opt Quant Electron 52, 507 (2020). https://doi.org/10.1007/s11082-020-02610-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02610-3

Keywords

Navigation