Skip to main content

Advertisement

Log in

Detection and analysis of hemoglobin concentration in blood with the help of photonic crystal based micro ring resonator structure

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The hemoglobin concentration in the blood is a significant parameter in the field of medical diagnostics. In this article, a photonic crystal based micro ring resonator structure is proposed to analyze the hemoglobin concentration in blood. As the refractive index of blood possesses a linear relationship with the hemoglobin concentration, therefore the blood sample with different refractive indices can be analyzed to determine different hemoglobin concentrations. Here, the changes in the resonance wavelengths at the output port of the structure due to different blood analytes are verified using FDTD simulation method. The proposed structure possesses a high sensitivity of almost 700 nm/RIU or 2 nm/change in the hemoglobin concentration (g/dL).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arunkumar, R., Suaganya, T., Robinson, S.: Design and analysis of photonic crystal elliptical ring resonator based pressure sensor. Int. J. Photonics Opt. Technol. 3(1), 30–33 (2017)

    Google Scholar 

  • Arunkumar, R., Suaganya, T., Robinson, S.: Design and analysis of 2D photonic crystal based biosensor to detect different blood components. Photonic Sens. 9(1), 69–77 (2019)

    ADS  Google Scholar 

  • Bharti, G.K., Biswas, U., Rakshit, J.K.: Design of micro-ring resonator based all optical universal reconfigurable logic circuit. Optoelectron. Adv. Mater. Rapid Commun. 13, 407–414 (2019)

    Google Scholar 

  • Bharti, G.K., Singh, M.P., Rakshit, J.K.: Design and modeling of polarization-conversion based all-optical basic logic gates in a single silicon ring resonator. Silicon. 12, 1279–1288 (2020)

    Google Scholar 

  • Biswas, U., Rakshit, J.K., Bharti, G.K.: Design of photonic crystal microring resonator based all-optical refractive-index sensor for analyzing different milk constituents. Opt. Quant. Electron. 52(1), 19 (2020)

    Google Scholar 

  • Chen, Y., Wang, W., Zhu, Q.: Theoretical study on biosensing characteristics of heterostructure photonic crystal ring resonator. Optik-Int. J. Light. Electron. Opt. 125(15), 3931–3934 (2014)

    Google Scholar 

  • Chopra, H., Kaler, R.S., Painam, B.: Photonic crystal waveguide-based biosensor for detection of diseases. J. Nanophotonics 10(3), 036011 (2016)

    ADS  Google Scholar 

  • Chulilla, J.A.M., Colás, M.S.R., Martín, M.G.: Classification of anemia for gastroenterologists. World J. Gastroenterol. WJG. 15(37), 4627 (2009)

    Google Scholar 

  • Danaie, M., Kiani, B.: Design of a label-free photonic crystal refractive index sensor for biomedical applications. Photonics Nanostruct.-Fundam. Appl. (2018). https://doi.org/10.1016/j.photonics.2018.06.004

    Article  Google Scholar 

  • DeLoughery, T.G.: Microcytic anemia. N. Engl. J. Med. 371(14), 1324–1331 (2014). https://doi.org/10.1056/NEJMra1215361

    Article  Google Scholar 

  • Friebel, M., Helfmann, J., Netz, U.J., Meinke, M.C.: Influence of oxygen saturation on the optical scattering properties of human red blood cells in the spectral range 250 to 2000 nm. J. Biomed. Opt. 14(3), 034001 (2009)

    ADS  Google Scholar 

  • Garvin, Jr., J. H.: Gender-specific aspects of pediatric hematology and oncology. In: Principles of gender-specific medicine, 2nd edn. pp. 51–61. Academic Press (2010). https://doi.org/10.1016/C2009-0-03574-0

  • Ghosh, N., et al.: Simultaneous determination of size and refractive index of red blood cells by light scattering measurements. Appl. Phys. Lett. 88(8), 084101 (2006)

    ADS  Google Scholar 

  • Hu, L.M., et al.: Photonic crystal fiber strain sensor based on modified mach-zehnder interferometer. IEEE Photonics J. (2012). https://doi.org/10.1109/JPHOT.2011.2180708

    Article  Google Scholar 

  • Joannopoulos, J.D., Meade, R., Winn, J.: Photonic Crystals. Princeton University, Princeton, N.J. (1995)

    MATH  Google Scholar 

  • Johnson, S. G., Joannopoulos J. D.: Introduction to photonic crystals: Bloch’s theorem, band diagrams, and gaps (but no defects).Photonic Crystal Tutorial. 1–16 (2003)

  • Johnson, S.G., Fan, S., Villeneuve, P.R., Joannopoulos, J.D., Kolodziejski, L.A.: Guided modes in photonic crystal slabs. Phys. Rev. B. 60(8), 5751 (1999)

    ADS  Google Scholar 

  • Koos, C., et al.: FDTD-modeling of dispersive nonlinear ring resonators: accuracy studies and experiments. IEEE J. Quantum Electron. 42, 1215–1223 (2006)

    ADS  Google Scholar 

  • Lazareva, E.N., Tuchin, V.V.: Measurement of refractive index of hemoglobin in the visible/NIR spectral range. J. Biomed. Optics. 23(3), 035004 (2018a)

    ADS  Google Scholar 

  • Lazareva, E.N., Tuchin, V.V.: Blood refractive index modelling in the visible and near infrared spectral regions. J. Biomed. Photonics Eng. (2018). https://doi.org/10.18287/JBPE18.04.010503

    Article  Google Scholar 

  • Liu, Q., et al.: Highly sensitive Mach-Zehnder interferometer biosensor based on silicon nitride slot waveguide. Sens. Actuators B: Chem. 188, 681–688 (2013)

    Google Scholar 

  • Lumerical FDTD solutions [Online]-https://www.lumerical.com/tcad-products/fdtd/

  • Mohanram, A., et al.: Anemia and end-stage renal disease in patients with type 2 diabetes and nephropathy. Kidney Int. 66(3), 1131–1138 (2004)

    Google Scholar 

  • Murphy, W.G.: The sex difference in haemoglobin levels in adults—mechanisms, causes, and consequences. Blood Rev. 28(2), 41–47 (2014)

    Google Scholar 

  • National health portal of India, Anemia. https://www.nhp.gov.in/disease/blood-lymphatic/anaemia.

  • Radhouene, M., Chhipa, M.K., Najjar, M., Robinson, S., Suthar, B.: Novel design of ring resonator based temperature sensor using photonics technology. Photonic Sens. 7, 311–316 (2017)

    ADS  Google Scholar 

  • Radhouene, M., Najjar, M., Chhipa, M.K., Robinson, S., Suthar, B.: Design and analysis a thermo-optic switch based on photonic crystal ring resonator. Optik. 172, 924–929 (2018)

    ADS  Google Scholar 

  • Rahman-Zadeh, F., Danaie, M., Kaatuzian, H.: Design of a highly sensitive photonic crystal refractive index sensor incorporating ring-shaped GaAs cavity. Opto-Electron. Rev. 27(4), 369–377 (2019)

    ADS  Google Scholar 

  • Robinson, S., Shanthi, K.V.: Analysis of protein concentration based on photonic crystal ring resonator. Int. J. Opt. Photonics (IJOP) (2016). https://doi.org/10.18869/acadpub.ijop.10.2.123

    Article  Google Scholar 

  • Sharma, P.: Design of photonic crystal based biosensor for detection of glucose concentration in urine. IEEE Sens. J. 15(2), 1035–1042 (2015)

    ADS  Google Scholar 

  • Sharma, P., Sharan, P.: Design of photonic crystal based ring resonator for detection of different blood constituents. Opt. commun. 348, 10–23 (2015)

    ADS  Google Scholar 

  • Sreenivasulu, T., et. al.: Photonic crystal based force sensor on silicon microcantilever.IEEE Sensors, IEEE. 1–4 (2015)

  • Sultana, J., et al.: Terahertz detection of alcohol using a photonic crystal fiber sensor. Appl. Opt. 57(10), 2426–2433 (2018)

    ADS  Google Scholar 

  • Sünner, T., et al.: Photonic crystal cavity based gas sensor. Appl. Phys. Lett. 92(26), 261112 (2008)

    ADS  Google Scholar 

  • Tavousi, A., Rakhshani, M.R., Mansouri-Birjandi, M.A.: High sensitivity label-free refractometer based biosensor applicable to glycated hemoglobin detection in human blood using all-circular photonic crystal ring resonators. Opt. Commun. 429, 166–174 (2018)

    ADS  Google Scholar 

  • Wu, K., Kuhlmey, B.T., Eggleton, B.J.: Ultrasensitive photonic crystal fiber refractive index sensor. Opt. Lett. 34(3), 322–324 (2009)

    ADS  Google Scholar 

  • Zhernovaya, O., Sydoruk, O., Tuchin, V., Douplik, A.: The refractive index of human hemoglobin in the visible range. Phys. Med. Biol. 56(13), 4013 (2011)

    Google Scholar 

Download references

Acknowledgements

This research work is a part of research project entitled “Design of photonic crystal micro-ring resonator based all-optical sensors” under taken by Dr. Jayanta Kumar Rakshit which is funded by “Third phase of Technical Education Quality Improvement Programme (TEQIP-III): Minor (seed) Research grant scheme at NIT Agartala”, India. (Ref. No.: F.NITA.2 (265-Estt)/2019/TEQIP-III/Research Grant/9469-71).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayanta Kumar Rakshit.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, U., Rakshit, J.K. Detection and analysis of hemoglobin concentration in blood with the help of photonic crystal based micro ring resonator structure. Opt Quant Electron 52, 449 (2020). https://doi.org/10.1007/s11082-020-02566-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02566-4

Keywords

Navigation