Study of super absorption properties of 1D graphene and dielectric photonic crystal for novel applications

Abstract

In this article, we have theoretically analyzed the variation of real and imaginary components of electric permittivity and also the variation of refractive index of the graphene material in the Terahertz frequency range. The optical characteristics of One-Dimensional Periodic Structure (1-DPS) of graphene and dielectric materials have analyzed using Transfer Matrix Method. The transfer matrix method is very eminent method to analyze the optical characteristics of 1-DPS like dispersion relation, phase velocity, group velocity, reflection, transmission and absorption characteristics, etc. The absorption characteristics of considered graphene-based multilayered periodic structure have been analyzed with the variation of chemical potential (\(\mu_{c}\)) of the graphene layer. The calculated absorption spectra of considered 1-DPS at the certain threshold frequency have found high and threshold value for the high chemical potential (gate voltage) of the graphene having the large thickness of the dielectric layer. Such the high and threshold absorption property of graphene-based 1-DPS, which acts as super absorber at terahertz region of the electromagnetic spectrum, may be used for the novel super absorber applications.

This is a preview of subscription content, log in to check access.

Fig.1
Fig.2
Fig.3
Fig.4
Fig.5
Fig.6

References

  1. Al-sheqefi, F.U.Y., Belhadj, W.: Photonic band characteristics of one-dimensional graphene-dielectric periodic structures. Superlattice Microstruct. 88 , 127–138 (2015). https://doi.org/10.1016/j.spmi.2015.09.009

    ADS  Article  Google Scholar 

  2. Arefinia, Z., Asgari, A.: Novel attributes in the scaling and performance considerations of the one-dimensional graphene-based photonic crystals for terahertz applications. Phys. E 54, 34–39 (2013)

    Article  Google Scholar 

  3. Bae, S., Kim, H., Lee, Y., Xu, X., Park, J., Zheng, Y., Balakrishnan, J., Lei, T., Kim, H.R., Song, Y.I., Kim, Y.J., Kim, K.S., Ozyilmaz, B., Ahn, J.H., Hong, B.H., Lijima, S.: Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574–578 (2010)

    ADS  Article  Google Scholar 

  4. Berman, O.L., Kezerashvili, R.Y.: Graphene-based onedimensional photonic crystal. J. Phys. 24, 015305 (2012)

    Google Scholar 

  5. Bludov, Y.V., Peres, N.M.R., Vasilevskiy, M.I.: Unusual reflection of electromagnetic radiation from a stack of graphene layers at oblique incidence. J. Opt. 15, 114004 (2013)

    ADS  Article  Google Scholar 

  6. Bludov, Y.V., Peres, N.M.R., Smirnov, G., Vasilevskiy, M.I.: Scattering of surface plasmon polaritons in a graphene multilayer photonic crystal with inhomogeneous doping. Phys. Rev. B 93, 245425 (2016)

    ADS  Article  Google Scholar 

  7. Busch, K., von Freymann, G., Linden, S., Mingaleev, S.F., Tkeshelashvili, L., Wegener, M.: Periodic nanostructures for photonics. Phys. Rep. 444, 101–202 (2007)

    ADS  Article  Google Scholar 

  8. Chigrin, D.N., Lavrinenko, A.V., Yarotsky, D.A., Gaponenko, S.V.: Observation of total omni-directional reflection from a one-dimensional dielectric lattice. Appl. Phys. 68, 25–28 (1999)

    Article  Google Scholar 

  9. Ding, G., Liu, S., Zhang, H., Kong, X., Li, H., Li, B., Liu, S., Li, H.: Tunable electromagnetically induced transparency at terahertz frequencies in coupled graphene metamaterial. Chin. Phys. B 24, 118103 (2015)

    ADS  Article  Google Scholar 

  10. Falkovsky, L.A.: Optical properties of graphene. J. Phys. Conf. Ser. 129, 012004–12007 (2008)

    Article  Google Scholar 

  11. Fink, Y., Winn, J.N., Fan, S., Chen, C., Michel, J., Joannopoulos, J.D., Thomas, E.L.: A dielectric omnidirectional reflector. Science 282, 1679–1682 (1998)

    ADS  Article  Google Scholar 

  12. Fu, J., Chen, W., Liu, B.: Tunable defect mode realized by graphene-based photonic crystal. Phys. Lett. A 380, 1793–1798 (2016)

    ADS  Article  Google Scholar 

  13. Gaponenko, S.V.: Introduction to Nanophotonics. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  14. Geim, K., Novoselov, K.S.: The rise of graphene. Nat. Mat. 6, 183–191 (2007)

    Article  Google Scholar 

  15. Gosciniak, J., Tan, D.T.H.: Theoretical investigation of graphene-based photonic modulators. Sci. Rep. 3(1), 1–6 (2013). https://doi.org/10.1038/srep01897

    Article  Google Scholar 

  16. Gu, X., Chen, X.F., Chen, Y.P., Zheng, X.L., Xia, Y.X., Chen, Y.L.: Narrowband multiple wavelengths filter in aperiodic optical super lattices. Opt. Com. 237, 53–58 (2004)

    ADS  Article  Google Scholar 

  17. Joannopolos, J.D., Johnson, S.G., Meade, R.D., Winn, J.N.: Photonic Crystals: Molding the Flow of Light. Univ. Press, Princeton (2007)

    Google Scholar 

  18. John, S.: Strong localization of photons in certain disordered dielectric super lattices. Phys. Rev. Lett. 58, 2486–2489 (1987)

    ADS  Article  Google Scholar 

  19. Kaipa, C.S.R., Yakovlev, A.B., Hanson, G.W., Padooru, Y.R., Medina, F., Mesa, F.: Enhanced transmission with a graphene dielectric microstructure at low-terahertz frequencies. Phys. Rev. B 85, 245407 (2012)

    ADS  Article  Google Scholar 

  20. Khaleque, A., Hattori, H.T.: Absorption enhancement in graphene photonic crystal structures. Appl. Opt. 55, 2936–2942 (2016)

    ADS  Article  Google Scholar 

  21. Krauss, T.F., De La Rue, R.M.: Photonic crystals in the optical regime: past, present and future. Prog. Quant. Electron. 23, 51–96 (1999)

    ADS  Article  Google Scholar 

  22. Kumar, A., Thapa, K.B.: Study of optical property of defect mode in one dimensional double negative photonic crystal with plasma. Adv. Sci. Eng. Med. 10, 1–5 (2018)

    Article  Google Scholar 

  23. Kumar, A., Singh, P.P., Thapa, K.B.: A new idea for broadband reflector and tunable multi-channel filter of one dimensional symmetric photonic crystal with magnetized cold plasma defects. AIP Conf. Proc. 1953, 060043 (2018a)

    Article  Google Scholar 

  24. Kumar, A., Kumar, N., Thapa, K.B.: Tunable broadband reflector and tunable narrowband filter of a dielectric and magnetized cold plasma photonic crystal. Eur. Phys. J. Plus 133, 250 (2018b)

    Article  Google Scholar 

  25. Kumar, A., Thapa, K.B., Ojha, S.P.: A tunable broadband filter of ternary photonic crystal containing plasma and superconducting material. Ind. J. Phys. 93, 791–798 (2019). https://doi.org/10.1007/s12648-018-1335-9

    Article  Google Scholar 

  26. Liu, J.T., Liu, N.H., Li, J., Li, X.J., Huang, J.H.: Enhanced absorption of graphene with one-dimensional photonic crystal. Appl. Phys. Lett. 101, 052104 (2012)

    ADS  Article  Google Scholar 

  27. Massaoudi, S., de Lustrac, A., Huynen, I.: Properties of metallic photonic band gap material with defect at microwave frequencies: calculation and experimental verification. JEMWA 20(14), 1967–1980 (2006)

    Google Scholar 

  28. Nefedov, I., Melnikov, L.: Plasmonic terahertz amplification in graphene-based asymmetric hyperbolic metamaterial. Photonics 2, 594–603 (2015)

    Article  Google Scholar 

  29. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    ADS  Article  Google Scholar 

  30. Qi, L., Liu, C.: Complex band structure of 1D anisotropic graphene photonic crystals’. Photonics Res. 5(6), 543–551 (2017)

    Article  Google Scholar 

  31. Qin, C., Wang, B., Huang, H., Long, H., Wang, K., Lu, P.: Low-loss plasmonic supermodes in graphene multilayers. Opt. Exp. 22, 25324–25332 (2014)

    ADS  Article  Google Scholar 

  32. Sakoda, K.: Optical Properties of Photonic Crystals. Springer, Berlin (2004)

    Google Scholar 

  33. Sensale-Rodriguez, B., Yan, R., Kelly, M.M., Fang, T., Tahy, K., Hwang, W.S., Jena, D., Liu, L., Xing, H.G.: Broadband graphene terahertz modulators enabled by intraband transitions. Nat. Commun. 3, 1–7 (2012)

    Article  Google Scholar 

  34. Sharma, S.D., Hwang, E.H., Tse, W.K.: Many-body interaction effects in doped and undoped graphene: Fermi liquid versus non-Fermi liquid. Phys. Rev. B 75, 121406(R) (2007). https://doi.org/10.1103/PhysRevB.75.121406

    ADS  Article  Google Scholar 

  35. Sreekanth, K.V., Zeng, S., Yong, K.T., Yu, T.: Sensitivity enhanced biosensor using graphene-based one-dimensional photonic crystal. Sens. Actuators B 182, 424–428 (2013)

    Article  Google Scholar 

  36. Tang, Y., Zhu, Z., Zhang, J., Guo, C., Liu, K., Yuan, X., Qin, S.: A transmission-type electrically tunable polarizer based on graphene ribbons at terahertz wave band. Chin. Phys. Lett. 32, 025202 (2015)

    ADS  Article  Google Scholar 

  37. Wang, X., Zhi, L., Mullen, K.: Transparent, conductive graphene electrodes for Dye-sensitized solar cells. Nano Lett. 8, 323–327 (2008)

    ADS  Article  Google Scholar 

  38. Wang, F., Wang, Z., Qin, C., Wang, B., Long, H., Wang, K., Lu, P.: Asymmetric plasmonic supermodes in nonlinear graphene multilayers. Opt. Express 25, 1234–1241 (2017)

    ADS  Article  Google Scholar 

  39. Yablonovitch, E.: Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059 (1987)

    ADS  Article  Google Scholar 

  40. Yeh, P.: Optical Waves in Layered Media. Wiley, New York (1988)

    Google Scholar 

  41. Zhang, Y., Small, J.P., Amori, M.E.S., Kim, P.: Electric field modulation of galvano magnetic properties of mesoscopic graphite. Phys. Rev. Lett. 94, 176803 (2005)

    ADS  Article  Google Scholar 

  42. Zheng, Q.R., Lin, B.Q., Yuan, N.C.: Characteristics and applications of a novel compact spiral electromagnetic band gap (EBG) structures. J. Eelectromagn Waves Appl. 21, 199–213 (2007)

    Article  Google Scholar 

  43. Zhu, B., Ren, G., Zheng, S., Lin, Z., Jian, S.: Nanoscaledielectricgraphene-dielectric tunable infrared waveguide with ultrahigh refractive indices. Opt. Exp. 21, 17089–17096 (2013)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

Asish Kumar and Pawan Singh, Research Scholar, Department of Physics, Babasaheb Bhimrao Ambedkar University (A Central University) Lucknow, acknowledge to UGC, New Delhi for non-NET UGC fellowship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Khem B. Thapa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Singh, P. & Thapa, K.B. Study of super absorption properties of 1D graphene and dielectric photonic crystal for novel applications. Opt Quant Electron 52, 423 (2020). https://doi.org/10.1007/s11082-020-02548-6

Download citation

Keywords

  • Graphene
  • Dielectric
  • Multilayer structure
  • Chemical potential
  • Super-absorption
  • TMM