Skip to main content
Log in

A novel hollow core photonic sensor for liquid analyte detection in the terahertz spectrum: design and analysis

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A novel hollow core photonic crystal fiber (PCF) is proposed for biochemical analyte detection in the terahertz regime. The prime objective of the work is to increase the sensitivity but other significant features like effective material loss, confinement loss, effective area, numerical aperture and dispersion have been thoroughly investigated over a wide bandwidth using COMSOL version 5.3. Numerical simulation shows that a maximum chemical sensitivity of 99.76% 99.44% and 99.39% can be obtained for benzene, water and methanol respectively at optimum operating conditions. The symmetry in design makes the proposed structure easily feasible to be fabricated using the existing fabrication technologies. Thus it is believed that the proposed PCF has the potential due to its higher sensitivity and lower effective material loss to uplift the standard of PCF sensors and open a new window in this field of research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ademgil, H., Haxha, S.: PCF based sensor with high sensitivity, high birefringence and low confinement losses for liquid analyte sensing applications. Sensors 15, 31833–31842 (2015)

    Google Scholar 

  • Afzal, M.H.B.: Introduction to fibre-optic sensing system and practical applications in water quality management. In: 2013 Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT), pp. 1–9. IEEE (2013)

  • Ahmed, K., Islam, M.I., Paul, B.K., Islam, M.S., Sen, S., Chowdhury, S., Uddin, M.S., Asaduzzaman, S., Bahar, A.N.: Effect of photonic crystal fiber background materials in sensing and communication applications. Mater. Disc. 7, 8–14 (2017)

    Google Scholar 

  • Anthony, J., Leonhardt, R., Leon-Saval, S.G., Argyros, A.: THz propagation in kagome hollow-core microstructured fibers. Opt. Express 19, 18470–18478 (2011a)

    ADS  Google Scholar 

  • Anthony, J., Leonhardt, R., Argyros, A., Large, M.C.: Characterization of a microstructured Zeonex terahertz fiber. JOSA B 28, 1013–1018 (2011b)

    ADS  Google Scholar 

  • Asaduzzaman, S., Ahmed, K.: Microarray-core based circular photonic crystal fiber for high chemical sensing capacity with low confinement loss. Opt. Appl. 47, 123–130 (2017)

    Google Scholar 

  • Asaduzzaman, S., Ahmed, K., Bhuiyan, T., Farah, T.: Hybrid photonic crystal fiber in chemical sensing. SpringerPlus 5, 748 (2016)

    Google Scholar 

  • Atakaramians, S., Afshar, S., Fischer, B.M., Abbott, D., Monro, T.M.: Low loss, low dispersion and highly birefringent terahertz porous fibers. Opt. Commun. 282, 36–38 (2009)

    ADS  Google Scholar 

  • Blanchard, P., Burnett, J., Erry, G., Greenaway, A., Harrison, P., Mangan, B., Knight, J., Russell, P.S.J., Gander, M., McBride, R.: Two-dimensional bend sensing with a single, multi-core optical fibre. Smart Mater. Struct. 9, 132 (2000)

    ADS  Google Scholar 

  • Bock, W., Chen, J., Mikulic, P., Eftimov, T., Korwin-Pawlowski, M.: Pressure sensing using periodically tapered long-period gratings written in photonic crystal fibres. Meas. Sci. Technol. 18, 3098 (2007)

    ADS  Google Scholar 

  • Chen, H., Chen, D., Hong, Z.: Squeezed lattice elliptical-hole terahertz fiber with high birefringence. Appl. Opt. 48, 3943–3947 (2009)

    ADS  Google Scholar 

  • Cho, M., Kim, J., Park, H., Han, Y., Moon, K., Jung, E., Han, H.: Highly birefringent terahertz polarization maintaining plastic photonic crystal fibers. Opt. Express 16, 7–12 (2008)

    ADS  Google Scholar 

  • Chowdhury, S., Sen, S., Ahmed, K., Asaduzzaman, S.: Design of highly sensible porous shaped photonic crystal fiber with strong confinement field for optical sensing. Opt. Int. J. Light Electron Opt. 142, 541–549 (2017a)

    Google Scholar 

  • Chowdhury, S., Sen, S., Ahmed, K., Paul, B.K., Miah, M.B.A., Asaduzzaman, S., Islam, M.S., Islam, M.I.: Porous shaped photonic crystal fiber with strong confinement field in sensing applications: design and analysis. Sens. Bio-Sens. Res. 13, 63–69 (2017b)

    Google Scholar 

  • Cregan, R., Mangan, B., Knight, J., Birks, T., Russell, P.S.J., Roberts, P., Allan, D.: Single-mode photonic band gap guidance of light in air. Science 285, 1537–1539 (1999)

    Google Scholar 

  • Cruz, A.L., Cordeiro, C., Franco, M.A.: 3D printed hollow-core terahertz fibers. Fibers 6, 43 (2018)

    Google Scholar 

  • Cubillas, A.M., Unterkofler, S., Euser, T.G., Etzold, B.J., Jones, A.C., Sadler, P.J., Wasserscheid, P., Russell, P.S.J.: Photonic crystal fibres for chemical sensing and photochemistry. Chem. Soc. Rev. 42, 8629–8648 (2013)

    Google Scholar 

  • Ebendorff-Heidepriem, H., Schuppich, J., Dowler, A., Lima-Marques, L., Monro, T.M.: 3D-printed extrusion dies: a versatile approach to optical material processing. Opt. Mater. Express 4, 1494–1504 (2014)

    ADS  Google Scholar 

  • Emiliyanov, G., Jensen, J.B., Bang, O., Hoiby, P.E., Pedersen, L.H., Kjær, E.M., Lindvold, L.: Localized biosensing with TOPAS microstructured polymer optical fiber: erratum. Opt. Lett. 32, 460–462 (2007)

    ADS  Google Scholar 

  • Fidanboylu, K., Efendioglu, H.: Fiber optic sensors and their applications. In: 5th International Advanced Technologies Symposium (IATS’09) (2009)

  • Frei, W.: Using perfectly matched layers and scattering boundary conditions for wave electromagnetics problems (2015). https://www.comsol.com/blogs/usingperfectly-matched-layers-and-scattering-boundary-conditions-for-waveelectromagnetics-problems/. Accessed 1 June 2017

  • Gérôme, F., Cook, K., George, A., Wadsworth, W., Knight, J.: Delivery of sub-100 fs pulses through 8 m of hollow-core fiber using soliton compression. Opt. Express 15, 7126–7131 (2007)

    ADS  Google Scholar 

  • Gérôme, F., Dupriez, P., Clowes, J., Knight, J., Wadsworth, W.: High power tunable femtosecond soliton source using hollow-core photonic bandgap fiber, and its use for frequency doubling. Opt. Express 16, 2381–2386 (2008)

    ADS  Google Scholar 

  • Goto, M., Quema, A., Takahashi, H., Ono, S., Sarukura, N.: Teflon photonic crystal fiber as terahertz waveguide. Jpn. J. Appl. Phys. 43, L317 (2004)

    ADS  Google Scholar 

  • Habib, M.A., Anower, M.S., Abdulrazak, L.F., Reza, M.S.: Hollow core photonic crystal fiber for chemical identification in terahertz regime. Opt. Fiber Technol. 52, 101933 (2019)

    Google Scholar 

  • Hayes, R.B., Dosemeci, M., Wacholder, S., Travis, L.B., Rothman, N., Hoover, R.N., Linet, M.S., Yin, S.-N., Li, G.-L., Li, C.-Y.: Benzene and the dose-related incidence of hematologic neoplasms in China. J. Natl Cancer Inst. 89, 1065–1071 (1997)

    Google Scholar 

  • Humbert, G., Knight, J., Bouwmans, G., Russell, P.S.J., Williams, D., Roberts, P., Mangan, B.: Hollow core photonic crystal fibers for beam delivery. Opt. Express 12, 1477–1484 (2004)

    ADS  Google Scholar 

  • Islam, R., Habib, M.S., Hasanuzzaman, G., Rana, S., Sadath, M.A., Markos, C.: A novel low-loss diamond-core porous fiber for polarization maintaining terahertz transmission. IEEE Photon. Technol. Lett. 28, 1537–1540 (2016)

    ADS  Google Scholar 

  • Islam, M.S., Sultana, J., Rana, S., Islam, M.R., Faisal, M., Kaijage, S.F., Abbott, D.: Extremely low material loss and dispersion flattened TOPAS based circular porous fiber for long distance terahertz wave transmission. Opt. Fiber Technol. 34, 6–11 (2017a)

    ADS  Google Scholar 

  • Islam, M.S., Sultana, J., Ahmed, K., Islam, M.R., Dinovitser, A., Ng, B.W.-H., Abbott, D.: A novel approach for spectroscopic chemical identification using photonic crystal fiber in the terahertz regime. IEEE Sens. J. 18, 575–582 (2017b)

    ADS  Google Scholar 

  • Islam, M.S., Paul, B.K., Ahmed, K., Asaduzzaman, S., Islam, M.I., Chowdhury, S., Sen, S., Bahar, A.N.: Liquid-infiltrated photonic crystal fiber for sensing purpose: design and analysis. Alexandria Eng. J. 57, 1459–1466 (2017c)

    Google Scholar 

  • Islam, M.S., Sultana, J., Dinovitser, A., Ahmed, K., Islam, M.R., Faisal, M., Ng, W.-H., Abbott, D.: A novel Zeonex based photonic sensor for alcohol detection in beverages. In: 2017 IEEE International Conference on Telecommunications and Photonics (ICTP), pp 114–118 (2017d)

  • Islam, M.S., Sultana, J., Dinovitser, A., Ahmed, K., Ng, B.W.-H., Abbott, D.: Sensing of toxic chemicals using polarized photonic crystal fiber in the terahertz regime. Opt. Commun. 426, 341–347 (2018a)

    ADS  Google Scholar 

  • Islam, M.S., Sultana, J., Ahmed, K., Islam, M.R., Dinovitser, A., Ng, B.W.-H., Abbott, D.: A novel approach for spectroscopic chemical identification using photonic crystal fiber in the terahertz regime. IEEE Sens. J. 18, 575–582 (2018b)

    ADS  Google Scholar 

  • Islam, M.S., Sultana, J., Rifat, A.A., Dinovitser, A., Ng, B.W.-H., Abbott, D.: Terahertz sensing in a hollow core photonic crystal fiber. IEEE Sens. J. 18, 4073–4080 (2018c)

    ADS  Google Scholar 

  • Islam, M., Reza, K.M.S., Islam, M.: Low loss topas based porous-core single-mode photonic crystal fiber for THz communications. Indian J. Pure Appl. Phys. 57(11), 836–841 (2019a)

    Google Scholar 

  • Islam, M., Rahman, J., Islam, M.: Topas based low loss and dispersion flatten decagonal porous core photonic crystal fiber for terahertz communication. Int. J. Microw. Opt. Technol. 14, 62 (2019b)

    Google Scholar 

  • Islam, M., Kabir, M., Khandoker, T., Islam, M.: A novel hollow core terahertz refractometric sensor. Sens. Bio-Sens. Res. 25, 100295 (2019c). https://doi.org/10.1016/j.sbsr.2019.100295

    Article  Google Scholar 

  • Islam, M.A., Islam, M.R., Tasnim, Z., Islam, R., Khan, R.L., Moazzam, E.: Low-loss and dispersion-flattened octagonal porous core PCF for terahertz transmission applications. Iran. J. Sci. Technol. Trans. Electr. Eng. (2020a). https://doi.org/10.1007/s40998-020-00337-1

    Article  Google Scholar 

  • Islam, M., Kabir, M., Khandoker, T., Arefin, M.: Highly birefringent honeycomb cladding terahertz fiber for polarization-maintaining applications. Opt. Eng. 59, 1 (2020b). https://doi.org/10.1117/1.OE.59.1.016113

    Article  Google Scholar 

  • Knight, J., Birks, T., Russell, P.S.J., Atkin, D.: All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett. 21, 1547–1549 (1996)

    ADS  Google Scholar 

  • Lee, K., Asher, S.A.: Photonic crystal chemical sensors: pH and ionic strength. J. Am. Chem. Soc. 122, 9534–9537 (2000)

    Google Scholar 

  • Lynge, E., Andersen, A., Nilsson, R., Barlow, L., Pukkala, E., Nordlinder, R., Boffetta, P., Grandjean, P., Heikkiia, P., Horte, L.-G.: Risk of cancer and exposure to gasoline vapors. Am. J. Epidemiol. 145, 449–458 (1997)

    Google Scholar 

  • Mou, F.A., Rahman, M.M, Islam, M.R., Bhuiyan, M.I.H.: Development of a photonic crystal fiber for THz wave guidance and environmental pollutants detection. Sens. Bio-Sens. Res. 29, 1–9 (2020)

  • Paul, B.K., Islam, M.S., Ahmed, K., Asaduzzaman, S.: Alcohol sensing over O + E + S+ C + L + U transmission band based on porous cored octagonal photonic crystal fiber. Photonic Sens. 7, 123–130 (2017)

    ADS  Google Scholar 

  • Pohanish, R.P.: Sittig’s Handbook of Toxic and Hazardous Chemicals and Carcinogens. William Andrew, Norwich (2017)

    Google Scholar 

  • Polyanskiy, M.: RefractiveIndex. INFO-Refractive index database. RefractiveIndex. INFO, [Online] (2018). http://refractiveindex.info/. Accessed 25 Jan 2016

  • Rahman, M.M., Mou, F.A., Bhuiyan, M.I.H., Islam, M.R.: Photonic crystal fiber based terahertz sensor for cholesterol detection in human blood and liquid foodstuffs. Sens. Bio-Sens. Res. 29, 1–8 (2020)

    Google Scholar 

  • Rajan, G., Ramakrishnan, M., Semenova, Y., Domanski, A., Boczkowska, A., Wolinski, T., Farrell, G.: Analysis of vibration measurements in a composite material using an embedded PM-PCF polarimetric sensor and an FBG sensor. IEEE Sens. J. 12, 1365–1371 (2012)

    ADS  Google Scholar 

  • Rinsky, R.A., Smith, A.B., Hornung, R., Filloon, T.G., Young, R.J., Okun, A.H., Landrigan, P.J.: Benzene and leukemia. N. Engl. J. Med. 316, 1044–1050 (1987)

    Google Scholar 

  • Sidek, O., Afzal, M.H.B.: A review paper on fiber-optic sensors and application of pDMS materials for enhanced performance. In: 2011 IEEE Symposium on Business, Engineering and Industrial APPLICATIONS (ISBEIA), pp. 458–463. IEEE (2011)

  • Sultana, J., Islam, M.S., Atai, J., Islam, M.R., Abbott, D.: Near-zero dispersion flattened, low-loss porous-core waveguide design for terahertz signal transmission. Opt. Eng. 56, 076114 (2017)

    ADS  Google Scholar 

  • Sultana, J., Islam, M.S., Ahmed, K., Dinovitser, A., Ng, B.W.-H., Abbott, D.: Terahertz detection of alcohol using a photonic crystal fiber sensor. Appl. Opt. 57, 2426–2433 (2018)

    ADS  Google Scholar 

  • Thakur, H.V., Nalawade, S.M., Saxena, Y., Grattan, K.: All-fiber embedded PM-PCF vibration sensor for Structural Health Monitoring of composite. Sens. Actuators, A 167, 204–212 (2011)

    Google Scholar 

  • U. D. o. Health and H. Services: Hazardous substances data bank (HSDB, online database). National Toxicology Information Program, National Library of Medicine, Bethesda, MD (1993)

  • U. D. o. Health and H. Services: Registry of toxic effects of chemical substances (RTECS, online database). National Toxicology Information Program, National Library of Medicine, Bethesda, MD 4 (1993)

  • Urich, A., Maier, R., Yu, F., Knight, J.C., Hand, D., Shephard, J.: Flexible delivery of Er: YAG radiation at 2.94 µm with negative curvature silica glass fibers: a new solution for minimally invasive surgical procedures. Biomed. Opt. Express 4, 193–205 (2013)

    Google Scholar 

  • Wolfbeis, O.S.: Fiber-optic chemical sensors and biosensors. Anal. Chem. 80, 4269–4283 (2008)

    Google Scholar 

  • Yeh, P., Yariv, A., Marom, E.: Theory of Bragg fiber. JOSA 68, 1196–1201 (1978)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Rakibul Islam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, M.R., Hossain, M.A., Talha, K.M.A. et al. A novel hollow core photonic sensor for liquid analyte detection in the terahertz spectrum: design and analysis. Opt Quant Electron 52, 415 (2020). https://doi.org/10.1007/s11082-020-02532-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02532-0

Keywords

Navigation