Skip to main content

A systematic insight into the surface plasmon polaritons guided by the graphene based heterostructures

Abstract

Graphene paves the way for the outstanding applications as it is one-atom thick and possesses perfect tunability properties. The main goal of this work is to study mode patterns of surface waves propagating in the graphene-based structures in the far-infrared region. Herein, we study a broad variety of graphene structures starting with the simplest graphene/dielectric interface guiding conventional surface plasmon polaritons (SPPs) and ending up with more complicated cases allowing to have a deeper insight into the complexity of the mode patterns tunability features provided by graphene paving the way for the hybridized waves. Thus, the hybridized surface-phonon-plasmon-polaritons (SPPPs) guided by graphene/LiF/glass compounds are theoretically studied. By constructing a heterostructure comprising graphene and LiF one may benefit from the advantages of both, resulting in engineerable hybridized SPPPs propagating in both directions, i.e. either forwardly or backwardly. Moreover, we conclude with presentation of the metamaterial composed of graphene and LiF building blocks allowing for an enhanced degree of freedom.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Agranovich, V.M., Kravtsov, V.E.: Notes on crystal optics of superlattices. Solid State Commun. 55(1), 85–90 (1985)

    ADS  Article  Google Scholar 

  2. Allen, S.J., Tsui, D.C., Logan, R.A.: Observation of the two-dimensional plasmon in silicon inversion layers. Phys. Rev. Lett. 38, 980–983 (1977)

    ADS  Article  Google Scholar 

  3. Allen, S.J., Stormer, H.L., Hwang, J.C.M.: Dimensional resonance of the two-dimensional electron gas in selectively doped GaAs/AlGaAs heterostructures. Phys. Rev. B 28, 4875–4877 (1983)

    ADS  Article  Google Scholar 

  4. Caldwell, J.D., Lindsay, L., Giannini, V., Vurgaftman, I., Reinecke, T.L., Maier, S.A., Glembocki, O.J.: Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons. Nanophotonics 4(1), 44–68 (2015)

    Article  Google Scholar 

  5. Driscoll, T., Andreev, G.O., Basov, D.N.: Tuned permeability in terahertz split-ring resonators for devices and sensors. Appl. Phys. Lett. 91, 062511 (2007)

    ADS  Article  Google Scholar 

  6. Falkovsky, L.A.: Optical properties of graphene. J. Phys: Conf. Ser. 129, 012004 (2008)

    Google Scholar 

  7. Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    ADS  Article  Google Scholar 

  8. Gric, T.: Surface-plasmon-polaritons at the interface of nanostructured metamaterials. Prog. Electromagn. Res. 46, 165–172 (2016)

    Article  Google Scholar 

  9. Gric, T., Hess, O.: Surface plasmon polaritons at the interface of two nanowire metamaterials. J. Opt. 19(8), 085101 (2017)

    ADS  Article  Google Scholar 

  10. Hajian, H., Serebryannikov, A.E., Ghobadi, A., Demirag, Y., Butun, B., Vandenbosch, G.A.E., Ozbay, E.: Tailoring far-infrared surface plasmon polaritons of a single-layer graphene using plasmon-phonon hybridization in graphene-LiF heterostructures. Sci. Rep. 8, 13209 (2018)

    ADS  Article  Google Scholar 

  11. Iorsh, I., Orlov, A., Belov, P., Kivshar, Y.: Interface modes in nanostructured metal-dielectric metamaterials. Appl. Phys. Lett. 99, 151914 (2011)

    ADS  Article  Google Scholar 

  12. Ju, L., Geng, B., Horng, J., Girit, C., Martin, M., Hao, Z., Bechtel, H.A., Liang, X., Zettl, A., Shen, Y.R., Wang, F.: Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol. 6, 630–634 (2011)

    ADS  Article  Google Scholar 

  13. Kafesaki, M., Basharin, A.A., Economou, E.N., Soukoulis, C.M.: THz metamaterials made of phonon-polariton materials. Photon. Nanostr. Fundam. Appl. 12, 376–386 (2014)

    ADS  Article  Google Scholar 

  14. Li, Z., Bao, K., Fang, Y., Guan, Z., Halas, N.J., Nordlander, P., Xu, H.: Effect of a proximal substrate on plasmon propagation in silver nanowires. Phys. Rev. B 82, 241402(R) (2010)

    ADS  Article  Google Scholar 

  15. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    ADS  Article  Google Scholar 

  16. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A.A.: Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005)

    ADS  Article  Google Scholar 

  17. Novotny, L., Hecht, B.: Principles of Nano-optics. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  18. Olego, D., Pinczuk, A., Gossard, A.C., Wiegmann, W.: Plasma dispersion in a layered electron gas: a determination in GaAs-(AlGa) As heterostructures. Phys. Rev. B 25, 7867–7870 (1982)

    ADS  Article  Google Scholar 

  19. Serebryannikov, A.E., Ozbay, E., Nojima, S.: Asymmetric transmission of terahertz waves using polar dielectrics. Opt. Express 22, 3075–3088 (2014)

    ADS  Article  Google Scholar 

  20. Serebryannikov, A.E., Mutlu, M., Ozbay, E.: Dielectric inspired scaling of polarization conversion subwavelength resonances in open ultrathin chiral structures. Appl. Phys. Lett. 11, 221907 (2015)

    ADS  Article  Google Scholar 

  21. Vakil, A., Engheta, N.: Transformation optics using graphene. Science 332(6035), 1291–1294 (2011)

    ADS  Article  Google Scholar 

  22. Xia, X., Sun, Y., Yang, H., Feng, H., Wang, L., Gu, C.: The influences of substrate and metal properties on the magnetic response of metamaterials at terahertz region. J. Appl. Phys. 104, 033505 (2008)

    ADS  Article  Google Scholar 

  23. Zhang, S., Bao, K., Halas, N.J., Xu, H., Nordlander, P.: Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed. Nano Lett. 11, 1657–1663 (2012)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska Curie Grant Agreement No. 713694 and from Engineering and Physical Sciences Research Council (EPSRC) (Grant No. EP/R024898/1). E.U.R. also acknowledges partial support from the Academic Excellence Project 5-100 proposed by Peter the Great St. Petersburg Polytechnic University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tatjana Gric.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gric, T., Rafailov, E. A systematic insight into the surface plasmon polaritons guided by the graphene based heterostructures. Opt Quant Electron 52, 404 (2020). https://doi.org/10.1007/s11082-020-02524-0

Download citation

Keywords

  • Graphene
  • Metamaterial
  • Surface plasmon polaritons