Skip to main content
Log in

A novel technique in BDG sensors: combination of phase and frequency correlation techniques

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This paper investigates a novel theoretical model based on Brillouin dynamic grating (BDG) sensors with ultrahigh spatial resolution over long sensing length. So far, frequency correlation or phase correlation technique is singly used to measure properties of the BDG sensors, although each of the techniques has its own drawbacks due to either low spatial resolution and short sensing length or processing complexities. We introduce a straightforward theoretical technique in BDG sensors based on the combination of phase and frequency correlations (CPFC) in a polarization-maintaining fiber. Correlation peak points in the CPFC technique are points where the correlation peaks in the phase correlation technique are matched with the correlation peaks in the frequency correlation technique. The spatial resolution in this novel technique is the same as the spatial resolution of the phase correlation technique. The peaks of the frequency correlation technique have no effect on the final spatial resolution of the CPFC technique and can only increase its sensing length. Long sensing length with no complexity and short calculation process are advantages of the CPFC technique. By simulation of this innovative theoretical technique, a 9 mm spatial resolution over 17.7 km sensing length has achieved, which to the best of our knowledge is the longest sensing length in millimeter range spatial resolution reported so far in BDG sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bai, Q., et al.: Recent advances in Brillouin optical time domain reflectometry. Sensors 19, 1862–1907 (2019)

    Article  Google Scholar 

  • Bao, X., Chen, L.: Recent progress in Brillouin scattering based fiber sensors. Sensors 11, 4152–4187 (2011)

    Article  Google Scholar 

  • Bao, X., Chen, L.: Recent progress in distributed fiber optic sensors. Sensors 12, 8601–8639 (2012)

    Article  Google Scholar 

  • Barrias, A., Casas, J.R., Villalba, S.: A review of distributed optical fiber sensors for civil engineering applications. Sensors 16, 748–783 (2016)

    Article  Google Scholar 

  • Bashan, G., et al.: Distributed clad mode sensor in unmodified standard single-mode fiber with 8 centimeters resolution. In: Seventh European Workshop on Optical Fibre Sensors 11199, 111991T. International Society for Optics and Photonics (2019)

  • Bergman, A., Langer, T., Tur, M.: Coding-enhanced ultrafast and distributed Brillouin dynamic gratings sensing using coherent detection. Lightw. Technol. 34, 5593–5600 (2016)

    Article  Google Scholar 

  • Bergman, A., Langer, T., Tur, M.: Phase-based, high spatial resolution and distributed, static and dynamic strain sensing using Brillouin dynamic gratings in optical fibers. Opt. Express 25, 5376–5388 (2017)

    Article  ADS  Google Scholar 

  • Chin, S., Primerov, N., Thevenaz, L.: Sub-centimeter spatial resolution in distributed fiber sensing based on dynamic Brillouin grating in optical fibers. IEEE Sens. J. 12, 189–194 (2011)

    Article  ADS  Google Scholar 

  • Comesana, D.F., Holland, K.R., Fernandez-Grande, E.: Spatial resolution limits for the localization of noise sources using direct sound mapping. J. Sound Vib. 375, 53–62 (2016)

    Article  ADS  Google Scholar 

  • Denisov, A.: Brillouin dynamic gratings in optical fibres for distributed sensing and advanced optical signal processing. PhD thesis, EPFL (2015)

  • Denisov, A., Soto, M.A., Thévenaz, L.: Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor theoretical analysis and experimental demonstration. Light Sci. Appl. 5, e16074–e16082 (2016)

    Article  ADS  Google Scholar 

  • Dominguez-Lopez, A., et al.: Resolving 1 million sensing points in an optimized differential time-domain Brillouin sensor. Opt. Lett. 42, 1903–1906 (2017)

    Article  ADS  Google Scholar 

  • Dong, Y., et al.: Long-range and high-spatial-resolution distributed birefringence measurement of a polarization-maintaining fiber based on Brillouin dynamic grating. J. Lightw. Technol. 31(16), 2681–2686 (2013)

    Article  ADS  Google Scholar 

  • Dong, Y., et al.: High-sensitivity distributed transverse load sensor with an elliptical-core fiber based on Brillouin dynamic gratings. Opt. Lett. 40, 5003–5006 (2015)

    Article  ADS  Google Scholar 

  • Gao, W., et al.: Simultaneous generation and Brillouin amplification of a dark hollow beam with a liquid-core optical fiber. Opt. Express 20, 20715–20720 (2012)

    Article  ADS  Google Scholar 

  • Jia, X.H., Chang, H.Q., Lin, K., Xu, C., Wu, J.G.: Frequency-comb-based BOTDA sensors for high-spatial-resolution/long-distance sensing. Opt. Express 25, 6997–7007 (2017)

    Article  ADS  Google Scholar 

  • Jouybari, S.N., Latifi, H., Ahmadlou, A., Karami, M.: Spatial resolution enhancement for Brillouin optical time domain analysis distributed sensor by use of correlation peak. In: Optical Measurement Systems for Industrial Inspection VI, vol. 7389, 73892T (2009)

  • Jouybari, S.N., Latifi, H., Farahi, F.: Reflection spectrum analysis of stimulated Brillouin scattering dynamic grating. Meas. Sci. Technol. 23, 085203–085209 (2012)

    Article  ADS  Google Scholar 

  • Kim, Y.H., Song, K.Y.: Optical time-domain reflectometry based on a Brillouin dynamic grating in an elliptical-core two-mode fiber. Opt. Lett. 42, 3036–3039 (2017)

    Article  ADS  Google Scholar 

  • Li, M., et al.: True random coding for Brillouin optical correlation domain analysis. OSA Contin. 2, 2234–2243 (2019)

    Article  Google Scholar 

  • Liang, H., Li, W., Linze, N., Chen, L., Bao, X.: High-resolution DPP-BOTDA over 50 km LEAF using return-to-zero coded pulses. Opt. Lett. 35, 1503–1505 (2010)

    Article  ADS  Google Scholar 

  • Malakzadeh, A., Mansoursamaei, M.: New matrix solution of the phase-correlation technique in a Brillouin dynamic grating sensor. J. Opt. Technol. 85, 644–647 (2018)

    Article  Google Scholar 

  • Malakzadeh, A., Pashaie, R., Mansoursamaei, M.: 150 km φ-OTDR sensor based on erbium and Raman amplifiers. Opt. Quant. Electron. 52, 1–8 (2020a)

    Article  Google Scholar 

  • Malakzadeh, A., Pashaie, R., Mansoursamaei, M.: Gain and noise figure performance of an EDFA pumped at 980 nm or 1480 nm for DOFSs. Opt. Quant. Electron. 52, 75–91 (2020b)

    Article  Google Scholar 

  • Mei, X., et al.: Fast coarse-fine locating method for φ-OTDR. Opt. Express 26, 2659–2667 (2018)

    Article  ADS  Google Scholar 

  • Okawachi, Y., et al.: Tunable all-optical delays via Brillouin slow light in an optical fiber. Phys. Rev. Lett. 94, 153902–153904 (2005)

    Article  ADS  Google Scholar 

  • Primerov, N., Thévenaz, L.: Generation and application of dynamic gratings in optical fibers using stimulated Brillouin scattering. PhD thesis, EPFL, Février, (2013)

  • Song, K.Y., Zou, W., He, Z., Hotate, K.: All-optical dynamic grating generation based on Brillouin scattering in polarization-maintaining fiber. Opt. Lett. 33, 926–928 (2008)

    Article  ADS  Google Scholar 

  • Song, K.Y., Hotate, K., Zou, W., He, Z.: Applications of Brillouin dynamic grating to distributed fiber sensors. Lightw. Technol. 35, 3268–3280 (2017)

    Article  Google Scholar 

  • Teng, L., et al.: Temperature-compensated distributed hydrostatic pressure sensor with a thin-diameter polarization-maintaining photonic crystal fiber based on Brillouin dynamic gratings. Opt. Lett. 41, 4413–4416 (2016)

    Article  ADS  Google Scholar 

  • Yamashita, R.K., He, Z., Hotate, K.: Spatial resolution improvement based on intensity modulation in measurement of Brillouin dynamic grating localized by correlation domain technique. In: OFS 2012 22nd International Conference on Optical Fiber Sensors 8421, 84219H (2012)

  • Zou, W., et al.: Correlation-based distributed measurement of a dynamic grating spectrum generated in stimulated Brillouin scattering in a polarization-maintaining optical fiber. Opt. Lett. 34, 1126–1128 (2009)

    Article  ADS  Google Scholar 

  • Zou, W., He, Z., Hotate, K.: One-laser-based generation/detection of Brillouin dynamic grating and its application to distributed discrimination of strain and temperature. Opt. Express 19, 2363–2370 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Mrs. S. N. Jouybari for her advices and discussion about the BDG issues.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdollah Malakzadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malakzadeh, A., Mansoursamaei, M. & Pashaie, R. A novel technique in BDG sensors: combination of phase and frequency correlation techniques. Opt Quant Electron 52, 388 (2020). https://doi.org/10.1007/s11082-020-02509-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02509-z

Keywords

Navigation