Skip to main content
Log in

DFT study of electronic and electrical properties of stana-silicene as a novel 2D nanomaterial

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, we reported a computational study of the 2-D nanomaterial (SnSi) as a possible new nanomaterial to be synthesized. This study is chiefly based on density functional theory calculation, which is implemented in the wien2k code. In fact, we calculated the electronic properties such as electronic band structures, band gaps, DOS, formation energy, and electrical conductivity of three types of monolayers Stana-Silicene; (SnSi, SnSi3, and SnSi7) with various concentrations (50%, 25%, and 12.5%) of the Sn and the Tin atoms. By computing the formation energy of these materials within various concentrations of the Sn atoms, we observed that the SnSi monolayer has more stability than SnSi3 and SnSi7. Another important result is that the electrical conductivity of SnSi depends on the concentrations of the Sn atoms. Indeed, it increases by increasing the concentration of the Sn atoms. By using various concentrations of the Tin atoms, we found out that all these nanomaterials behave as a semiconductor material within direct electronic band gaps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Al-Abboodi, M.H., Ajeel, F.N., Khudhair, A.M.: Influence of oxygen impurities on the electronic properties of graphene nanoflakes. Physica E 88, 1–5 (2017)

    ADS  Google Scholar 

  • Berger, C., Song, Z., Li, T., Li, X., Ogbazghi, A.Y., Feng, R., et al.: Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108, 19912–19916 (2004)

    Google Scholar 

  • Blaha, P., Schwarz, K., Madsen, G., Kvasnicka, D., Luitz, J.: “wien2k,” In: An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (2001)

  • Bolotin, K.I., Sikes, K., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., et al.: Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008)

    ADS  Google Scholar 

  • Cahangirov, S., Topsakal, M., Aktürk, E., Şahin, H., Ciraci, S.: Two-and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 102, 236804 (2009)

    ADS  Google Scholar 

  • Dakir, O., Houmad, M., Benyoussef, A., et al.: Absorption of visible light by GaAs and GaN nanosheets. Optik 141, 60–65 (2017)

    ADS  Google Scholar 

  • Denis, P.A., Huelmo, C.P., Iribarne, F.: On the band gaps and effective masses of mono and dual doped monolayer graphene. Comput. Mater. Sci. 137, 20–29 (2017)

    Google Scholar 

  • Dong, H., Zhou, L., Frauenheim, T., Hou, T., Lee, S.-T., Li, Y.: SiC7 siligraphene: a novel donor material with extraordinary sunlight absorption. Nanoscale 8, 6994–6999 (2016)

    ADS  Google Scholar 

  • Dos Santos, J.L., Peres, N., Neto, A.C.: Graphene bilayer with a twist: electronic structure. Phys. Rev. Lett. 99, 256802 (2007)

    ADS  Google Scholar 

  • Enriquez, H., Vizzini, S., Kara, A., Lalmi, B., Oughaddou, H.: Silicene structures on silver surfaces. J. Phys.: Condens. Matter 24, 314211 (2012)

    ADS  Google Scholar 

  • Fadaie, M., Shahtahmassebi, N., Roknabad, M.R., et al.: Investigation of new two-dimensional materials derived from stanene. Comput. Mater. Sci. 137, 208–214 (2017)

    Google Scholar 

  • Garcia, A.G., Baltazar, S.E., Castro, A.H.R., Robles, J.F.P., Rubio, A.: Influence of S and P doping in a graphene sheet. J. Comput. Theor. Nanosci. 5, 2221–2229 (2008)

    Google Scholar 

  • Garg, P., Choudhuri, I., Mahata, A., Pathak, B.: Band gap opening in stanene induced by patterned B–N doping. Phys. Chem. Chem. Phys. 19, 3660–3669 (2017)

    Google Scholar 

  • Guo, Z.-X., Zhang, Y.-Y., Xiang, H., Gong, X.-G., Oshiyama, A.: Structural evolution and optoelectronic applications of multilayer silicene. Phys. Rev. B 92, 201413 (2015)

    ADS  Google Scholar 

  • Houmad, M., Zaari, H., Benyoussef, A., El Kenz, A., Ez-Zahraouy, H.: Optical conductivity enhancement and band gap opening with silicon doped graphene. Carbon 94, 1021–1027 (2015)

    Google Scholar 

  • Houmad, M., Dakir, O., Benzidi, H., et al.: Magnetic behavior of Mn-doped silicon carbide nanosheet. Int. J. Mod. Phys. B 31(22), 1750163 (2017)

    ADS  Google Scholar 

  • Houmad, M., El Kenz, A., Benyoussef, A.: Thermal and electrical properties of siligraphene and its derivatives. Optik 157, 936–943 (2018)

    ADS  Google Scholar 

  • Houmad, M., Essaoudi, I., Ainane, A., et al.: Improving the electrical conductivity of Siligraphene SiC7 by strain. Optik 177, 118–122 (2019a)

    ADS  Google Scholar 

  • Houmad, M., Mohammed, M.H., Masrour, R., et al.: Electronic and electrical properties of siligraphene (g-SiC3) in the presence of several strains. J. Phys. Chem. Solids 127, 231–237 (2019b)

    ADS  Google Scholar 

  • Jia, H., Wang, R., Ni, Z., Liu, Y., Pi, X., Yang, D.: Formation, stability, geometry and band structure of organically surface-modified germanane. J. Mater. Sci. Technol. 33, 59–64 (2017)

    Google Scholar 

  • Kara, A., Enriquez, H., Seitsonen, A.P., Voon, L.L.Y., Vizzini, S., Aufray, B., et al.: A review on silicene—new candidate for electronics. Surf. Sci. Rep. 67, 1–18 (2012)

    ADS  Google Scholar 

  • Kim, K., Choi, J.-Y., Kim, T., Cho, S.-H., Chung, H.-J.: A role for graphene in silicon-based semiconductor devices. Nature 479, 338 (2011)

    ADS  Google Scholar 

  • Lagarde, P., Chorro, M., Roy, D., Trcera, N.: Study by EXAFS of the local structure around Si on silicene deposited on Ag (1 1 0) and Ag (1 1 1) surfaces. J. Phys.: Condens. Matter 28, 075002 (2016)

    ADS  Google Scholar 

  • Lin, S.: Light-emitting two-dimensional ultrathin silicon carbide. J. Phys. Chem. C 116, 3951–3955 (2012)

    Google Scholar 

  • Madsen, G.K., Singh, D.J.: BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175, 67–71 (2006)

    ADS  MATH  Google Scholar 

  • Mohammed, M.H.: Designing and engineering electronic band gap of graphene nanosheet by P dopants. Solid State Commun. 258, 11–16 (2017)

    ADS  Google Scholar 

  • Mohammed, M.H.: Controlling the electronic properties of the graphene nanoflakes by BN impurities. Physica E 95, 86–93 (2018)

    ADS  Google Scholar 

  • Mohammed, M.H., Ajeel, F.N., Khudhair, A.M.: Adsorption of gas molecules on graphene nanoflakes and its implication as a gas nanosensor by DFT investigations. Chin. J. Phys. 55(4), 1576–1582 (2017)

    Google Scholar 

  • Nagarajan, V., Chandiramouli, R.: NO2 adsorption behaviour on germanene nanosheet: a first-principles investigation. Superlattices Microstruct. 101, 160–171 (2017)

    ADS  Google Scholar 

  • Naqvi, S.R., Hussain, T., Luo, W., Ahuja, R.: Exploring doping characteristics of various adatoms on single-layer stanene. J. Phys. Chem. C 121, 7667–7676 (2017)

    Google Scholar 

  • Ni, Z., Liu, Q., Tang, K., Zheng, J., Zhou, J., Qin, R., et al.: Tunable bandgap in silicene and germanene. Nano Lett. 12, 113–118 (2011)

    ADS  Google Scholar 

  • Novoselov, K.: Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005)

    ADS  Google Scholar 

  • Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., et al.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    ADS  Google Scholar 

  • Novoselov, K., Jiang, D., Schedin, F., Booth, T., Khotkevich, V., Morozov, S., et al.: Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U.S.A. 102, 10451–10453 (2005)

    ADS  Google Scholar 

  • Oughaddou, H., Enriquez, H., Tchalala, M.R., Yildirim, H., Mayne, A.J., Bendounan, A., et al.: Silicene, a promising new 2D material. Prog. Surf. Sci. 90, 46–83 (2015)

    ADS  Google Scholar 

  • Perdew, J.P., Chevary, J.A., Vosko, S.H., Jackson, K.A., Pederson, M.R., Singh, D.J., et al.: Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671 (1992)

    ADS  Google Scholar 

  • Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)

    ADS  Google Scholar 

  • Petersen, M., Wagner, F., Hufnagel, L., Scheffler, M., Blaha, P., Schwarz, K.: Improving the efficiency of FP-LAPW calculations. Comput. Phys. Commun. 126, 294–309 (2000)

    ADS  MATH  Google Scholar 

  • Sachdeva, G., Kumar, C., Tankeshwar, K., et al.: Electronic properties of ultrathin 2D and 1D alloyed nanostructures of stanene. In: AIP Conference Proceedings. AIP Publishing LLC. p. 090049 (2017)

  • Schniepp, H.C., Li, J.-L., McAllister, M.J., Sai, H., Herrera-Alonso, M., Adamson, D.H., et al.: Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 110, 8535–8539 (2006)

    Google Scholar 

  • Shahrokhi, M., Leonard, C.: Tuning the band gap and optical spectra of silicon-doped graphene: many-body effects and excitonic states. J. Alloy. Compd. 693, 1185–1196 (2017)

    Google Scholar 

  • Shi, Z., Singh, C.V.: The ideal strength of two-dimensional stanene may reach or exceed the Griffith strength estimate. Nanoscale 9(21), 7055–7062 (2017). https://doi.org/10.1039/c7nr00010c

    Article  Google Scholar 

  • Shi, Z., Zhang, Z., Kutana, A., Yakobson, B.I.: Predicting two-dimensional silicon carbide monolayers. ACS Nano 9, 9802–9809 (2015)

    Google Scholar 

  • Sirikumara, H.I., Putz, E., Al-Abboodi, M., Jayasekera, T.: Symmetry induced semimetal-semiconductor transition in doped graphene. Sci. Rep. 6, 19115 (2016)

    ADS  Google Scholar 

  • Tonkikh, A., Klavsyuk, A., Zakharov, N., et al.: SnSi nanocrystals of zinc-blende structure in a Si matrix. Nano Res. 8(12), 3905–3911 (2015)

    Google Scholar 

  • Ullah, S., Hussain, A., Syed, W., Saqlain, M.A., Ahmad, I., Leenaerts, O., et al.: Band-gap tuning of graphene by Be doping and Be, B co-doping: a DFT study. RSC Adv. 5, 55762–55773 (2015)

    Google Scholar 

  • Varykhalov, A., Scholz, M., Kim, T.K., Rader, O.: Effect of noble-metal contacts on doping and band gap of graphene. Phys. Rev. B 82, 121101 (2010)

    ADS  Google Scholar 

  • Wang, X., Sun, G., Routh, P., Kim, D.-H., Huang, W., Chen, P.: Heteroatom-doped graphene materials: syntheses, properties and applications. Chem. Soc. Rev. 43, 7067–7098 (2014)

    Google Scholar 

  • Wang, Z., Li, P., Chen, Y., Liu, J., Zhang, W., Guo, Z., et al.: Synthesis, characterization and electrical properties of silicon-doped graphene films. J. Mater. Chem. C 3, 6301–6306 (2015)

    Google Scholar 

  • Wang, T., Zhao, R., Zhao, M., Zhao, X., An, Y., Dai, X., et al.: Effects of applied strain and electric field on small-molecule sensing by stanene monolayers. J. Mater. Sci. 52, 5083–5096 (2017)

    ADS  Google Scholar 

  • Yildirim, H., Kara, A.: Computational studies of silicene on silver surfaces. In: Silicene, Springer, Berlin, pp. 203–213 (2016)

  • Zhang, Y., Tan, Y.W., Stormer, H.L., Kim, P.: Experimental observation of the quantum Hall effectand Berry! sphasein graphene. Nature 438, 201 (2005)

    ADS  Google Scholar 

  • Zhao, J., Liu, H., Yu, Z., Quhe, R., Zhou, S., Wang, Y., et al.: Rise of silicene: a competitive 2D material. Prog. Mater Sci. 83, 24–151 (2016)

    Google Scholar 

  • Zhou, L.-J., Zhang, Y.-F., Wu, L.-M.: SiC2 siligraphene and nanotubes: novel donor materials in excitonic solar cells. Nano Lett. 13, 5431–5436 (2013)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Houmad.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Houmad, M., Dakir, O., Khuili, M. et al. DFT study of electronic and electrical properties of stana-silicene as a novel 2D nanomaterial. Opt Quant Electron 52, 399 (2020). https://doi.org/10.1007/s11082-020-02493-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02493-4

Keywords

Navigation