Skip to main content
Log in

Efficiency enhancement of an ultra-thin film silicon solar cell using conical-shaped nanoparticles: similar to superposition (top, middle, and bottom)

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The use of conical-shaped plasmonic nanostructures for light management in an ultra-thin silicon solar cell has been investigated. The optical absorption and hence photocurrent are obtained for several cases of structures using finite difference time domain simulations. In this paper, we demonstrate that the use of superposition theorem causes significant photocurrent enhancement due to the surface plasmonic effects of nanoparticles. For this, at first, we used one conical-shaped nanoparticle at the top side, then in the rear side, and finally, three nanoparticles are used in the top, bottom, and middle sides. Depending on the incident light wavelength, each nanoparticle manipulates the part of the spectrum. The photocurrents of 9.165, 10.463, 16.402, 17.761, and 18.072 mA/cm2, are obtained for a cell without nanoparticles, with one conical-shaped NP at the top, with one conical-shaped NP at the bottom, with two NPs at top and bottom and with three NPs at the top, bottom, and middle, respectively. Finally, the electrical field distribution and generation rate are calculated for proposed structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abdel-Latif, G.Y., Hameed, M.F.O., Hussein, M., Razzak, M.A., Obayya, S.S.: Characteristics of highly efficient star-shaped nanowires solar cell. J. Photonics Energy 8(4), 117–131 (2018)

    Google Scholar 

  • Akimov, Y.A., Koh, W.S.: Design of plasmonic nanoparticles for efficient subwavelength light trapping in thin-film solar cells. Plasmonics 6(1), 155–161 (2011)

    Google Scholar 

  • Akimov, Y.A., Ostrikov, K., Li, E.: Surface plasmon enhancement of optical absorption in thin-film silicon solar cells. Plasmonics 4(2), 107–113 (2009)

    Google Scholar 

  • Armaroli, N., Balzani, V.: The future of energy supply: challenges and opportunities. Angew. Chem. Int. Ed. 46(1–2), 52–66 (2007)

    Google Scholar 

  • Atwater, H.A., Polman, A.: Plasmonics for improved photovoltaic devices. Nat. Mater. 9(3), 205–213 (2010)

    ADS  Google Scholar 

  • Catchpole, K.A., Polman, A.: Plasmonic solar cells. Opt. Express 16(26), 21793–21800 (2008)

    ADS  Google Scholar 

  • Chu, S., Majumdar, A.: Opportunities and challenges for a sustainable energy future. Nature 488(7411), 294–303 (2012)

    ADS  Google Scholar 

  • Deng, C., Tan, X., Jiang, L., Tu, Y., Ye, M., Yi, Y.: Efficient light trapping in silicon inclined nanohole arrays for photovoltaic applications. Opt. Commun. 407, 199–203 (2018)

    ADS  Google Scholar 

  • Enrichi, F., Quandt, A., Righini, G.C.: Plasmonic enhanced solar cells: summary of possible strategies and recent results. Renew. Sustain. Energy Rev. 82, 2433–2439 (2018)

    Google Scholar 

  • Gedney, S.D.: Introduction to the finite-difference time-domain (FDTD) method for electromagnetics. Synth. Lect. Comput. Electromagn. 6(1), 1–250 (2011)

    ADS  MATH  Google Scholar 

  • Green, M.A.: Crystalline and thin-film silicon solar cells: state of the art and future potential. Sol. Energy 74(3), 181–192 (2003)

    ADS  Google Scholar 

  • Green, M.A., Hishikawa, Y., Dunlop, E.D., Levi, D.H., Hohl-Ebinger, J., Ho-Baillie, A.W.: Solar cell efficiency tables (version 52). Prog. Photovolt. Res. Appl. 26(7), 427–436 (2018)

    Google Scholar 

  • Hamblin, M., Downing, T., Anderson, S., Hawkins, A., Schmidt, H.: A patternable, anti-reflective light blocking layer using a nano-particle suspension in photoresist. In: 2018 IEEE Photonics Conference (IPC), pp. 1–2. IEEE (2018)

  • Heidarzadeh, H.: Comprehensive investigation of core-shell dimer nanoparticles size, distance and thicknesses on performance of a hybrid organic-inorganic halide perovskite solar cell. Mater. Res. Express 5(3), 1–13 (2018)

    Google Scholar 

  • Heidarzadeh, H.: Performance analysis of an HJ-IBC silicon solar cell in ultra-high temperatures: possibility of lower reduction efficiency rate. Silicon 12(6), 1369–1377 (2019)

    Google Scholar 

  • Heidarzadeh, H., Mehrfar, F.: Effect of size non-uniformity on performance of a plasmonic perovskite solar cell: an array of embedded plasmonic nanoparticles with the Gaussian distribution radiuses. Plasmonics 13, 2305–2312 (2018)

    Google Scholar 

  • Heidarzadeh, H., Tavousi, A.: Performance enhancement methods of an ultra-thin silicon solar cell using different shapes of back grating and angle of incidence light. Mater. Sci. Eng. B 240, 1–6 (2019)

    Google Scholar 

  • Heidarzadeh, H., Baghban, H., Rasooli, H., Dolatyari, M., Rostami, A.: A new proposal for Si tandem solar cell: significant efficiency enhancement in 3C–SiC/Si. Opt. Int. J. Light Electron Opt. 125(3), 1292–1296 (2014)

    Google Scholar 

  • Heidarzadeh, H., Dolatyari, M., Rostami, G., Rostami, A.: Modeling of solar cell efficiency improvement using pyramid grating in single junction silicon solar cell. In: 2nd international congress on energy efficiency and energy related materials (ENEFM2014), pp. 61–67. Springer (2015a)

  • Heidarzadeh, H., Rostami, A., Matloub, S., Dolatyari, M., Rostami, G.: Analysis of the light trapping effect on the performance of silicon-based solar cells: absorption enhancement. Appl. Opt. 54(12), 3591–3601 (2015b)

    ADS  Google Scholar 

  • Heidarzadeh, H., Rostami, A., Dolatyari, M.: Management of losses (thermalization-transmission) in the Si-QDs inside 3C–SiC to design an ultra-high-efficiency solar cell. Mater. Sci. Semicond. Process. 109, 1–9 (2020)

    Google Scholar 

  • Hussain, S.Q., Le, A.H.T., Mallem, K., Park, H., Ju, M., Lee, S., Cho, J., Lee, Y., Park, J., Cho, E.-C.: Efficient light trapping for maskless large area randomly textured glass structures with various haze ratios in silicon thin film solar cells. Sol. Energy 173, 1173–1180 (2018)

    ADS  Google Scholar 

  • Isabella, O., Vismara, R., Linssen, D., Wang, K., Fan, S., Zeman, M.: Advanced light trapping scheme in decoupled front and rear textured thin-film silicon solar cells. Sol. Energy 162, 344–356 (2018)

    ADS  Google Scholar 

  • Janfaza, M., Mansouri-Birjandi, M.A., Tavousi, A.: Tunable plasmon-induced reflection based on graphene nanoribbon Fabry-Perot resonator and nanodisks. Opt. Mater. 84, 675–680 (2018)

    ADS  Google Scholar 

  • Jang, Y.H., Jang, Y.J., Kim, S., Quan, L.N., Chung, K., Kim, D.H.: Plasmonic solar cells: from rational design to mechanism overview. Chem. Rev. 116(24), 14982–15034 (2016)

    Google Scholar 

  • Jangjoy, A., Bahador, H., Heidarzadeh, H.: Design of an ultra-thin silicon solar cell using localized surface plasmonic effects of embedded paired nanoparticles. Opt. Commun. 450, 216–221 (2019)

    ADS  Google Scholar 

  • Krogman, K.C., Druffel, T., Sunkara, M.K.: Anti-reflective optical coatings incorporating nanoparticles. Nanotechnology 16(7), 338–343 (2005)

    ADS  Google Scholar 

  • Kunz, K.S., Luebbers, R.J.: The Finite Difference Time Domain Method for Electromagnetics. CRC Press, Boca Raton (1993)

    Google Scholar 

  • Lozano, G., Louwers, D.J., Rodríguez, S.R., Murai, S., Jansen, O.T., Verschuuren, M.A., Rivas, J.G.: Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources. Light Sci. Appl. 2(5), 66–73 (2013)

    Google Scholar 

  • Maier, S.A.: Plasmonics: Fundamentals and Applications. Springer, Berlin (2007)

    Google Scholar 

  • Mandal, P., Sharma, S.: Progress in plasmonic solar cell efficiency improvement: a status review. Renew. Sustain. Energy Rev. 65, 537–552 (2016)

    Google Scholar 

  • Mokari, G., Heidarzadeh, H.: Efficiency enhancement of an ultra-thin silicon solar cell using plasmonic coupled core-shell nanoparticles. Plasmonics 14, 1–9 (2019)

    Google Scholar 

  • Morawiec, S., Mendes, M., Priolo, F., Crupi, I.: Plasmonic nanostructures for light trapping in thin-film solar cells. Mater. Sci. Semicond. Process. 92, 10–18 (2018)

    Google Scholar 

  • Nagel, J.R., Scarpulla, M.A.: Enhanced absorption in optically thin solar cells by scattering from embedded dielectric nanoparticles. Opt. Express 18(102), A139–A146 (2010)

    ADS  Google Scholar 

  • Nasser, H., Saleh, Z.M., Özkol, E., Günoven, M., Bek, A., Turan, R.: Fabrication of Ag nanoparticles embedded in Al: ZnO as potential light-trapping plasmonic interface for thin film solar cells. Plasmonics 8(3), 1485–1492 (2013)

    Google Scholar 

  • Oulton, R.F., Sorger, V.J., Genov, D., Pile, D., Zhang, X.: A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat. Photonics 2(8), 496–500 (2008)

    Google Scholar 

  • Pala, R.A., White, J., Barnard, E., Liu, J., Brongersma, M.L.: Design of plasmonic thin-film solar cells with broadband absorption enhancements. Adv. Mater. 21(34), 3504–3509 (2009)

    Google Scholar 

  • Pillai, S., Catchpole, K., Trupke, T., Green, M.: Surface plasmon enhanced silicon solar cells. J. Appl. Phys. 101(9), 1–9 (2007)

    Google Scholar 

  • Reineck, P., Lee, G.P., Brick, D., Karg, M., Mulvaney, P., Bach, U.: A solid-state plasmonic solar cell via metal nanoparticle self-assembly. Adv. Mater. 24(35), 4750–4755 (2012)

    Google Scholar 

  • Shah, A., Torres, P., Tscharner, R., Wyrsch, N., Keppner, H.: Photovoltaic technology: the case for thin-film solar cells. Science 285(5428), 692–698 (1999)

    Google Scholar 

  • Sheng, X., Broderick, L.Z., Kimerling, L.C.: Photonic crystal structures for light trapping in thin-film Si solar cells: modeling, process and optimizations. Opt. Commun. 314, 41–47 (2014)

    ADS  Google Scholar 

  • Shim, J.-P., Choi, S.-B., Kong, D.-J., Seo, D.-J., Kim, H.-J., Lee, D.-S.: Ag nanoparticles-embedded surface plasmonic InGaN-based solar cells via scattering and localized field enhancement. Opt. Express 24(14), A1176–A1187 (2016)

    Google Scholar 

  • Sönnichsen, C.: Plasmons in metal nanostructures. PhD diss., 1-134 LMU (2001)

  • Spinelli, P., Ferry, V., Van de Groep, J., Van Lare, M., Verschuuren, M., Schropp, R., Atwater, H., Polman, A.: Plasmonic light trapping in thin-film Si solar cells. J. Opt. 14(2), 344–356 (2012)

    Google Scholar 

  • Tan, H., Santbergen, R., Smets, A.H., Zeman, M.: Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles. Nano Lett. 12(8), 4070–4076 (2012)

    ADS  Google Scholar 

  • Xia, D., Hu, L., Tan, X., He, C., Pan, W., Yang, T., Huang, Y., Shu, D.: Immobilization of self-stabilized plasmonic Ag-AgI on mesoporous Al2O3 for efficient purification of industrial waste gas with indoor LED illumination. Appl. Catal. B 185, 295–306 (2016)

    Google Scholar 

  • Yang, M., Fu, Z., Lin, F., Zhu, X.: Incident angle dependence of absorption enhancement in plasmonic solar cells. Opt. Express 19(104), A763–A771 (2011)

    ADS  Google Scholar 

  • Zhang, J.Z.: Biomedical applications of shape-controlled plasmonic nanostructures: a case study of hollow gold nanospheres for photothermal ablation therapy of cancer. J. Phys. Chem. Lett. 1(4), 686–695 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Bahador.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sobhani, F., Heidarzadeh, H. & Bahador, H. Efficiency enhancement of an ultra-thin film silicon solar cell using conical-shaped nanoparticles: similar to superposition (top, middle, and bottom). Opt Quant Electron 52, 387 (2020). https://doi.org/10.1007/s11082-020-02487-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02487-2

Keywords

Navigation