Skip to main content
Log in

Influence of structural and surface properties of MgO thin film as a heat spreader on high power LED performance

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Thermal management difficulties in light emitting diodes (LEDs) incredibly impacts LEDs performance, reliability, and lifespan. To find a lasting solution to LEDs thermal management difficulties, MgO thin film was deposited on Cu substrate and used as heat spreader for LED package. Influence of structural and surface properties on thermal performance of LED was investigated by XRD, FESEM and AFM. Optimum LED thermal performance was recorded from the LED mounted to MgO heat spreader with low microstrain of 7.3 × 10–3, uniform particle size (34 nm), surface roughness (4.5 nm) and minimum peak-valley distance (1.90 nm). Thermal conductivity and thermal transient characterization illustrated that 0.6 M MgO thin film showed 15.73 W/mK, higher junction temperature difference (18.06 °C) with higher total thermal resistance difference (3.35 K/W). Improved illumination and reduction in LED surface temperature were recorded using MgO heat spreader from optical and thermal infrared analysis. Therefore, magnesium oxide thin film would be suggested as a heat spreader for enhancing LED’s thermal management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Amrit, J.: Impact of surface roughness temperature dependency on the thermal contact resistance between Si (111) and liquid 4He. Phys Rev B 81, 1–11 (2010)

    Article  Google Scholar 

  • Anitha, M., Tamllnayagam, V., Anitha, N., Amalraj, L., Gokul Raj, S.: Investigations on the structural, electrical and optical properties of thin films of CdO (111). J Mater Sci Mater Electron 28(22), 17297–17307 (2017)

    Article  Google Scholar 

  • Choi, H., Hwang, S.: Sol-gel-derived magnesium oxide precursor for thin-film fabrication. J Mater Res 15(4), 842–845 (2000)

    Article  ADS  Google Scholar 

  • Dong, H., Wen, B., Melnik, R.: Relative importance of grain boundaries and size effects in thermal conductivity of nanocrystalline materials. Sci Rep 4, 1–5 (2014)

    Google Scholar 

  • Heo, Y.J., Kim, H.T., Kim, K.J., Nahm, S., Yoon, Y.J., Kim, J.: Enhanced heat transfer by room temperature deposition of AlN film on aluminum for a light emitting diode package. Appl Therm Eng 50(1), 799–804 (2013)

    Article  Google Scholar 

  • Hu, X., Singaravelu S., Goodson, K. E.: Two medium model for the bond line thickness of particle filled thermal interface materials. In: Proceedings of ASME International Mechanical Engineering Congress and Exposition (IMECE’04), 13–19 Nov 2004, Anaheim, CA (2004)

  • Idris, M.S., Subramani, S., Maryam, W.A.W., Devarajan, M.: Synthesis of MgO thin film on aluminum and copper substrates as thermal interface materials. IEEE Trans Electron Device 66, 1450–1457 (2019)

    Article  ADS  Google Scholar 

  • Ki-Duck, C., Tae, H., Sung-Il, C.: Improvement of color temperature using independent control of red, green, blue luminance in AC plasma display panel. IEEE Trans Electron Device 50(2), 359–365 (2003)

    Article  ADS  Google Scholar 

  • Lee, J., Yun, T.S., Choi, S.U.: The effect of particle size on thermal conduction in granular mixtures. Materials 8, 3975–3991 (2015)

    Article  ADS  Google Scholar 

  • Lim, W.Q., Shanmugan, S., Devarajan, M.: Influence of annealed Cu–Al2O3 thin film on the performance of high power LED: thermal and optical analysis. Opt Quantum Electron 48(166), 1–15 (2016)

    Google Scholar 

  • Lim, W.Q., Devarajan, M., Shanmugan, S.: Evaluation on high power LED with Cu–Al2O3 thin film as thermal interface material: thermal resistance and optical output analysis. J Optoelectron Biomed Mater 9(1), 17–29 (2017)

    Google Scholar 

  • Lim, W.Q., Devarajan, M., Subramani, S.: Performance of Cu–Al2O3 thin film as thermal interface material in LED package: thermal transient and optical output analysis. Microelectron Int 35(1), 33–44 (2018)

    Article  Google Scholar 

  • Liu, C.H., Jean, M-D., Jiang, J-B., Xu, M-S., Chien, J-Y., Wang, C.C.: Using AlN-coated heat sink to improve the heat dissipation of LED packages. In: MATEC Web of Conferences (ICCPE 2015), pp. 1–4 (2016)

  • Meyer, K.E., Cheaito, R., Paisley, E., Shelton, C.T., Braun, J.L., Maria, J.P., Jf, Ihlefeld, Hopkins, P.E.: Crystalline coherence length effects on the thermal conductivity of MgO thin films. J Mater Sci 51(23), 10408–10417 (2016)

    Article  ADS  Google Scholar 

  • Ong, Z., Shanmugan, S., Mutharasu, D.: Thermal performance of high power LED on boron doped aluminium nitride thin film coated copper substrates. J Sci Res Rep 5(2), 109–119 (2015)

    Google Scholar 

  • Ponja, B.S.D., Parkin, I.P., Carmalt, C.J.: Magnesium oxide thin films with tunable crystallographic preferred orientation via aerosol-assisted CVD. Chem Vap Depos 21, 145–149 (2015)

    Article  Google Scholar 

  • Shanmugan, S., Yin, O.Z., Anithambigai, P., Mutharasu, D.: Analysis of ZnO thin film as thermal interface material for high power light emitting diode application. J Electron Packag 138, 1–6 (2017)

    Google Scholar 

  • Terakado, N., Kozawa, R., Yoshimine, T., Takahashi, Y., Fujiwara, T.: Attempt to fabricate a high thermal conductivity transparent oxide glass by dispersing MgO crystals and refractive index matching. AIP Adv 8, 115012 (2018). https://doi.org/10.1063/1.5054339

    Article  ADS  Google Scholar 

  • Valanarasu, S., Dhanasekaran, V., Karunakaran, M., Vijayan, T.A., Chandramohan, R., Mahalingam, T.: Microstructural, optical and electrical properties of various time annealed spin coated MgO thin films. J Mater Sci Mater Electron 25, 3846–3853 (2014)

    Article  Google Scholar 

  • Wereszczak, A.A., Morrissey, T.G., Volante, C.N., Farris, P.J., Groele, R.J., Wiles, R.H., Wang, H.: Thermally conductive MgO-filled epoxy molding compounds. IEEE Trans Compon Packag Manuf 3(12), 1994–2005 (2013)

    Article  Google Scholar 

  • Yang, L., Fenglian, S.: Thermal analysis of chip-on-flexible LED packages with Cu heat sinks by SnBi soldering. Microelectron Int 33(1), 42–44 (2016)

    Article  Google Scholar 

  • Zulkefle, H., Ismail, L.N., Bakar, R.A., Mahmood, M.R.: Molar concentration effect on MgO thin films properties. In: (ISIEA) IEEE Symposium on Industrial Electronics and Applications, pp. 468–471 (2011)

  • Zulkefle, H., Yusof, K.A., Ismail, L.N., Bakarl, R.A., Rusop, M.: Sol-Gel derived nano-magnesium oxide: influence of drying temperature to the dielectric layer properties. In: IOP Conference Series: Materials Science and Engineering (2013a). https://doi.org/10.1088/1757-899X/46/1/012006

  • Zulkefle, H., Wahid, M.H., Ismail, L.N., Bakar, R.A., Mahmood, M.R.: Nanostructures bilayer ZnO/MgO dielectrics for metal–insulator–metal capacitor applications. J Mater Sci Mater Electron 24(11), 4213–4220 (2013b)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanmugan Subramani.

Ethics declarations

Conflict of interest

On behalf of all the authors and the research institution (Universiti Sains Malysia (USM), no any conflicts of interest financially, non-financially, directly or indirectly related to the research work, the authors or between the authors, the research laboratory (NOR, USM) and their research institution.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Idris, M.S., Subramani, S. Influence of structural and surface properties of MgO thin film as a heat spreader on high power LED performance. Opt Quant Electron 52, 378 (2020). https://doi.org/10.1007/s11082-020-02479-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02479-2

Keywords

Navigation