Skip to main content
Log in

Performance analysis of \({N}^{+}{\text{-}}CdTe/{n}^{0}{\text{-}}{Hg}_{0.824675}{Cd}_{0.175325}Te/{p}^{+}{\text{-}}{Hg}_{0.824675}{Cd}_{0.175325}Te\ n - i - p\) photodetector operating at 30 μm wavelength for terahertz applications

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, the performance of a \({N}^{+}{\text{-}}CdTe/{n}^{0}{\text{-}}{Hg}_{0.824675}{Cd}_{0.175325}Te/{p}^{+}{\text{-}}{Hg}_{0.824675}{Cd}_{0.175325}Te\) n–i–p photodetector with a heavily doped CdTe material as a window for terahertz frequency application has been analyzed. The detector is designed and studied in respect of electrical and optical characteristics. The results obtained with the help of TCAD tool are compared with the results obtained on the basis of the analytical model. The proposed photodetector is suitable for operation at a wavelength of 30 μm at liquid nitrogen temperature (77 K). It has the characteristics of dark current of \(4.6\times {10}^{-9}\, {\text{A}}\), quantum efficiency (\(\upeta \)) ~ 73.93%, responsivity (\(R\)) ~ 17.9 A/W, specific detectivity (\({D}^{*}\)) ~ \(1.44\times {10}^{9} \,{\text{mHz}}^{1/2}\,{\text{W}}^{-1}\), noise equivalent power (\({\text{NEP}}\)) ~ \(0.3\times {10}^{-16}\, {\text{W}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Chu, J.H., Mi, Z.Y., Tang, D.Y.: Band-to-band optical absorption in narrow-gap Hg1−xCdxTe semiconductors. J. Appl. Phys. 71, 3955–3961 (1992)

    Article  ADS  Google Scholar 

  • Chu, J., Li, B., Liu, K., Tang, D.: Empirical rule of intrinsic absorption spectroscopy in Hg1−xCdxTe. J. Appl. Phys. 75, 1234–1235 (1994)

    Article  ADS  Google Scholar 

  • Dennis, P.N.J., Elliott, C.T., Jones, C.L.: A method for routine characterisation of the hole concentration in p-type cadmium mercury telluride. Infrared Phys. 22, 167–169 (1982)

    Article  ADS  Google Scholar 

  • Dwivedi, A.D.D.: Analytical modeling and numerical simulation of P+-Hg0.69Cd0.31Te/n-Hg0.78Cd0.22Te/CdZnTe heterojunction photodetector for a long-wavelength infrared free space optical communication system. J. Appl. Phys. 110, 043101 (2011)

    Article  ADS  Google Scholar 

  • Dwivedi, A.D.D., Chakrabarti, P.: Modeling and ATLAS simulation of Hg Cd Te based MWIR photodetector for free space optical communication. In: International Conference of Recent Advances in Microwave Theory and Applications, MICROWAVE 2008, pp. 412–415 (2008)

  • Dwivedi, A.D.D., Chakrabarti, P.: Analytical modeling and ATLAS simulation of N+-Hg0.69Cd0.31Te/n0-Hg0.78Cd0.22Te/p+-Hg0.78Cd0.22Te photodetector for long wavelength free space optical communication. Optoelectron. Adv. Mater. 4, 480–497 (2010)

    Google Scholar 

  • Dwivedi, A.D.D., Chakrabarti, P.: Analytical modeling and numerical simulation of Hg1−xCdx Te based N+n0p+ photodetector for MWIR free space optical communication. Int. J. Adv. Appl. Phys. Res. 2, 20–27 (2015)

    Article  Google Scholar 

  • Dwivedi, A.D.D., Pranav, A., Gupta, G., Chakrabarti, P.: Numerical simulation of HgCdTe based simultaneous MWIR/LWIR photodetector for free space optical communication. Int. J. Adv. Appl. Phys. Res. 2, 37–45 (2015)

    Article  Google Scholar 

  • Leisawitz, D.T., Danchi, W.C., DiPirro, M.J., Feinberg, L.D., Gezari, D.Y., Hagopian, M., Langer, W.D., Mather, J.C., Moseley, Jr, S.H., Shao, M., Silverberg, R.F., Staguhn, J.G., Swain, M.R., Yorke, H.W., Zhang, X.: Scientific motivation and technology requirements for the SPIRIT and SPECS farinfrared/submillimeter space interferometers. In: UV, Optical, and IR Space Telescopes and Instruments, SPIE Poceedings, vol. 4013, pp. 36–46 (2000)

  • Lopes, V.C., Syllaios, A.J., Chen, M.C.: Minority carrier lifetime in mercury cadmium telluride. Semicond. Sci. Technol. 8, 824–841 (1993)

    Article  ADS  Google Scholar 

  • Lowney, J.R., Seiler, D.G., Littler, C.L., Yoon, I.T.: Intrinsic carrier concentration of narrow-gap mercury cadmium telluride based on the nonlinear temperature dependence of the band gap. J. Appl. Phys. 71, 1253–1258 (1992)

    Article  ADS  Google Scholar 

  • Migliorato, P., White, A.M.: Common anion heterojunctions: CdTe–CdHgTe. Solid State Electron. 26, 65–69 (1983)

    Article  ADS  Google Scholar 

  • Pawar, A.Y., Sonawane, D.D., Erande, K.B., Derle, D.V.: Terahertz technology and its applications. Drug Invent. Today 5, 157–163 (2013)

    Article  Google Scholar 

  • Rogalski, A., Adamiec, K., Rutkowski, J.: Narrow-Gap Semiconductor Photodiodes. SPIE, Philadelphia (2000)

    Book  Google Scholar 

  • Saxena, P.K.: Modeling and simulation of HgCdTe based p+–n–n+ LWIR photodetector. Infrared Phys. Technol. 54, 25–33 (2011)

    Article  ADS  Google Scholar 

  • Shur, M.: Terahertz technology: devices and applications. In: Proceedings of ESSCIRC 2005: 31st European Solid-State Circuits Conference, pp. 13–21 (2005)

  • Sizov, F., Zabudsky, V., Dvoretskii, S., Petryakov, V., Golenkov, A., Andreyeva, K., Tsybrii, Z.: Two-color detector: mercury–cadmium–telluride as a terahertz and infrared detector. Appl. Phys. Lett. 106, 082104 (2015)

    Article  ADS  Google Scholar 

  • Sizov, F., Dobrovolski, V., Tsybrii, Z., Zabudsky, V., Dvoretskii, S., Mikhailov, N.: Narrow-gap MCT as THz detector. In: 21st International Conference on Microwave, Radar and Wireless Communications, MIKON 2016, pp. 8–10 (2016)

  • Weiler, M.H.: Magnetooptical properties of Hg1−xCdxTe alloys. In: Willordson, R.K., Beer, A.C. (eds.) Semiconductors and Semimetals, vol. 16, pp. 119–191. Academic Press, New York (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parthasarathi Chakrabarti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devarakonda, V., Dwivedi, A.D.D., Pandey, A. et al. Performance analysis of \({N}^{+}{\text{-}}CdTe/{n}^{0}{\text{-}}{Hg}_{0.824675}{Cd}_{0.175325}Te/{p}^{+}{\text{-}}{Hg}_{0.824675}{Cd}_{0.175325}Te\ n - i - p\) photodetector operating at 30 μm wavelength for terahertz applications. Opt Quant Electron 52, 340 (2020). https://doi.org/10.1007/s11082-020-02450-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02450-1

Keywords

Navigation