Skip to main content
Log in

Implementation of quantum teleportation of photons across an air – water interface

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Since the theory of quantum mechanics brought about a revolution in physics nearly a century ago, various applications have emerged. In particular, the quantum properties of photons are being studied to provide a solution to some of the challenges faced by existing communication networks, such as security issues and energy efficiency. One of these properties is teleportation, via which information regarding the state of a photon, without its physical motion, can be transmitted across a classical channel. We report, perhaps for the first time, the teleportation of photons across a simulated air–water interface. An entangled pair of photons is generated from a mode-locked laser source, through spontaneous four-wave mixing (SFWM). One of the pair is sent wirelessly to an underwater receiver. Six States of Polarization are teleported sequentially, implementing active feed-forward operation, with the average fidelity of 96.7% surpassing the classical limit. This work is anticipated to lead to the establishment of a quantum communication link between two different media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3.
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Caspani, L. et al.: Integrated sources of photon quantum states based on nonlinear optics. Light: Sci. Appl. 6, 1–12 (2017)

    Article  Google Scholar 

  • Gaumnitz, T., et al.: Streaking of 43-attosecond soft X-ray pulses generated by a passively CEP-stable mid-infrared driver. Opt. Express 25, 27506–27518 (2017)

    Article  ADS  Google Scholar 

  • Haltrin, V.I.: One-parameter two-term Henyey-Greenstein phase function for light scattering in seawater. Appl. Opt. 41, 1022–1028 (2002)

    Article  ADS  Google Scholar 

  • Hanson, F., Radic, S.: High bandwidth underwater optical communication. Appl. Opt. 47, 277–283 (2008)

    Article  ADS  Google Scholar 

  • Harrow, A.W., Montanaro, A.: Quantum computational supremacy. Nature 549, 203–209 (2017)

    Article  ADS  Google Scholar 

  • Ikonen, J., Salmilehto, J., Mottonen, M.: Energy efficient quantum computing. Npj Quantum Inf. 3, 17 (2017)

    Article  ADS  Google Scholar 

  • Ji, L., et al.: Towards quantum communications in free-space seawater. Opt. Express 25, 19795–19806 (2017)

    Article  ADS  Google Scholar 

  • Kaushal, H., Kaddoum, G.: Underwater optical wireless communication. IEEE Access 4, 1518–1547 (2016)

    Article  Google Scholar 

  • Kogelnik, H., Nelson, L.E., Gordon, J.P., Jopson, R.M.: Jones matrix for second-order polarization mode dispersion. Opt. Lett. 25, 19–21 (2000)

    Article  ADS  Google Scholar 

  • Kultavewuti, P., et al.: Polarization-entangled photon pair sources based on spontaneous four wave mixing assisted by polarization mode dispersion. Sci. Rep. 7, 5785 (2017)

    Article  ADS  Google Scholar 

  • Kumar, P. et al.: Quantum Information Processing, vol. 3 (Kluwer Academic-Plenum (2004)

  • Li, Z.H., Zubairy, M.S., Al-Amri, M.: Quantum secure group communication. Sci. Rep. 8, 3899 (2018)

    Article  ADS  Google Scholar 

  • Liao, S.K., et al.: Satellite-to-ground quantum key distribution. Nature 549, 43–47 (2017)

    Article  ADS  Google Scholar 

  • Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate-distance limit of quantum key distribution without quantum repeaters. Nature 557, 400–403 (2018)

    Article  ADS  Google Scholar 

  • Lv, N., et al.: 15 µm polarization entanglement generation based on birefringence in silicon wire waveguides. Opt. Lett. 38, 2873–2876 (2013)

    Article  ADS  Google Scholar 

  • Ma, X.S., et al.: Quantum teleportation over 143 kilometers using active feed-forward. Nature 489, 269–273 (2012)

    Article  ADS  Google Scholar 

  • Marcikic, I., de Riedmatten, H., Tittel, W., Zbinden, H., Gisin, N.: Long-distance teleportation of qubits at telecommunication wavelengths. Nature 421, 509–513 (2003)

    Article  ADS  Google Scholar 

  • Peng, Y., Qiao, Y., Xiang, T., Chen, X.: Manipulation of the spontaneous parametric down-conversion process in space and frequency domains via wavefront shaping. Opt. Lett. 43, 3985–3988 (2018)

    Article  ADS  Google Scholar 

  • Pirandola, S., Eisert, J., Weedbrook, C., Furusawa, A., Braunstein, S.L.: Advances in quantum teleportation. Nat. Photon. 9, 641–652 (2015)

    Article  ADS  Google Scholar 

  • Ren, J.G., et al.: Ground-to-satellite quantum teleportation. Nature 549, 70–73 (2017)

    Article  ADS  Google Scholar 

  • Shapiro, J.H.: The quantum theory of optical communications. IEEE Sel. Top. Quantum Electron. 15, 1547–1569 (2009)

    Article  ADS  Google Scholar 

  • Takesue, H., et al.: Quantum teleportation over 100 km of fiber using highly efficient superconducting nanowire single-photon detectors. Optica 2, 832–835 (2015)

    Article  ADS  Google Scholar 

  • Tonolini, F., Adib, F. Networking across boundaries: Enabling wireless communication through the water-air interface. Proc. SIGCOMM’18, Budapest (2018)

  • Valivarthi, et al.: Quantum teleportation across a metropolitan fiber network. Nat. Photon. 10, 676–680 (2016)

    Article  ADS  Google Scholar 

  • Werner, R. F.: Quantum Information. Springer Tracts in Modern Physics, vol. 173 Ch 2, Springer, Berlin (2001)

  • Xu, P., et al.: Two-hierarchy entanglement swapping for a linear optical quantum repeater. Phys. Rev. Lett. 119, 170502 (2017)

    Article  ADS  Google Scholar 

  • Yin, J., et al.: Satellite-based entanglement distribution over 1200 kilometers. Science 356, 1140–1144 (2017a)

    Article  Google Scholar 

  • Yin, J., et al.: Satellite-to-ground entanglement-based quantum key distribution. Phys. Rev. Lett. 119, 200501 (2017b)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Naval Research Board, Defense Research and Development Organization (Grant No. NRB-405/OEP/17–18).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhanalakshmi Samiappan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakravartula, V., Samiappan, D., Kumar, R. et al. Implementation of quantum teleportation of photons across an air – water interface. Opt Quant Electron 52, 332 (2020). https://doi.org/10.1007/s11082-020-02449-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02449-8

Keywords

Navigation