Skip to main content
Log in

Ultrafast and wide tunable VCSEL using graphene passive cavity

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A novel approach for achieving ultrafast and wide tunable vertical-cavity surface-emitting lasers (VCSELs) is presented. The design is based on incorporating multiple graphene flakes separated by SiO2 dielectric in a λ/2 cavity and placing multiquantum wells in one of the quarter wave layers of the bottom mirrors. The device concept enhances both the wavelength tuning range and tuning speed which is attractive for many photonic applications. By applying a gate voltage on the graphene flakes, the effective refractive index of the cavity can be changed with ultrahigh speed. We have shown that 2 graphene flakes inside a 5 µm-diameter passive cavity provides tuning speed as high as 32 GHz and wavelength tuning range of 3.8 nm. The tuning speed increases to 52 GHz when the device diameter is reduced to 3 µm. The effect of spacer thickness and the number of graphene flakes on the performance characteristics of the device is investigated. Our analysis shows that tuning speed as high as 2 GHz and wavelength tuning range of ~ 12 nm is obtained for VCSEL that incorporates 6 graphene flakes separated by 10 nm SiO2 spacers and biased in parallel. The tuning speed can be increased to ~ 16 GHz when the flakes are biased in series at the expense of higher gate voltage. A tradeoff between the wavelength tuning range and the tuning speed is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bank, S., Bae, H., Yuen, H., Wistey, M., Goddard, L., Harris, J.: Room-temperature continuous-wave 1.55 µm GaInNAsSb laser on GaAs. Electron. Lett. 42(3), 156–157 (2006)

    Article  ADS  Google Scholar 

  • Barzegar-Parizi, S., Khavasi, A.: Designing dual-band absorbers by graphene/metallic metasurfaces. IEEE J. Quantum Electron. 55(2), Article ID 7300108 (2019)

  • Burak, D., Binder, R.: Cold-cavity vectorial eigenmodes of VCSEL’s. IEEE J. Quantum Electron. 33(7), 1205–1215 (1997)

    Article  ADS  Google Scholar 

  • Burak D., Binder, R.: Full vectorial eigenmode analysis of VCSELs: threshold gain values and modal frequencies. In: Proceedings of SPIE 3286, Vertical-Cavity Surface-Emitting Lasers II (1998)

  • Gierl, C., et al.: Surface micromachined MEMS-tunable VCSELs with wide and fast wavelength tuning. Electron. Lett. 47(22), 1243–1244 (2011)

    Article  ADS  Google Scholar 

  • Haglund, E., Westbergh, P., Gustavsson, J., Haglund, E., Larsson, A.: High-speed VCSELs with strong confinement of optical fields and carriers. IEEE J. Lightwave Technol. 34(2), 269–277 (2016)

    Article  ADS  Google Scholar 

  • Huffaker, H., Deppe, D., Shin, J.: Threshold characteristics of planar and index-guided microcavity lasers. Appl. Phys. Lett. 67(1), 4–6 (1995)

    Article  ADS  Google Scholar 

  • Ji, L., Gao, Y., Xu, Y., Sun, X., Wu, C., Wu, Y., Zhang, D.: High figure of merit electro-optic modulator based on graphene on silicon dual-slot waveguide. IEEE J. Quantum Electron. 54(6), Article ID 5200107 (2018)

  • Li, G., Zhang, G., Lou, R., Wang, Y., Xie, X., Wang, J., Wang, Y., Cheng, G.: Graphene fabrication by using femtosecond pulsed laser and its application on passively Q-switched solid-state laser as saturable absorber. IEEE Photonics J. 12(2), 1501009(1)–1501009(9) (2020)

    Google Scholar 

  • Liao, Y., Feng, G., Zhou, H., Mo, J., Sun, H., Zhou, S.: Ultra-broadband all-optical graphene modulator. IEEE Photonic Technol. Lett. 30(8), 661–664 (2018)

    Article  ADS  Google Scholar 

  • Luo, X., Zhai, X., Li, H., Liu, J., Wang, L.: Tunable nonreciprocal graphene waveguide with kerr nonlinear material. IEEE Photonic Technol. Lett. 29(21), 1903–1906 (2017)

    Article  ADS  Google Scholar 

  • Lott, J., Shchukin, V., Ledentsov, N., Kasten, A., Choquette, K.: Passive cavity surface emitting laser. Electron. Lett. 47(12), 717–719 (2011)

    Article  ADS  Google Scholar 

  • Qasaimeh, O.: Using graphene to tune vertical-cavity surface-emitting lasers. Opt. Quantum Electron. 52(128), 1–17 (2020). https://doi.org/10.1007/s11082-020-2252-7

    Article  Google Scholar 

  • Qiao, P., Cook, K., Li, K., Chang-Hasnain, C.: Wavelength-swept VCSELs. IEEE J. Sel. Top. Quantum Electron. 23(6), 1700516(1)–1700516(16) (2017)

    Article  Google Scholar 

  • Sarmiento, T., Zhao, L., Moser, P., Li, T., Huo, Y., Harris, J.: Continuous-wave operation of GaAs-based 1.5-μm GaInNAsSb VCSELs. IEEE Photonic Technol. Lett. 31(20), 1607–1610 (2019)

    Article  ADS  Google Scholar 

  • Shah, M., Lu, R., Peng, D., Ma, Y., Ye, S., Zhang, Y., Zhang, Z., Liu, Y.: Graphene-assisted polarization-insensitive electro-absorption optical modulator. IEEE Trans. Nanotechnol. 16(6), 1004–1010 (2017a)

    Article  ADS  Google Scholar 

  • Shah, M., Ye, S.-W., Zou, X.-H., Yuan, F., Jha, A., Zhang, Y., Lu, R.-G., Liu, Y.: Graphene-assisted electroabsorption optical modulator using D-microfiber. IEEE J. Sel. Top. Quantum Electron. 23(1), 3400305(1)–3400305(5) (2017b)

    Article  Google Scholar 

  • Sorianello, V., Contestabile, G., Romagnoli, M.: Graphene on silicon modulators. IEEE J. Lightwave Technol. 38(10), 2782–2789 (2020)

    Article  ADS  Google Scholar 

  • Theofanopoulos, P., Trichopoulos, G.: On-wafer graphene devices for THz applications using a high-yield fabrication process. In: 2019 IEEE MTT-S International Microwave Symposium (IMS) (2019). https://doi.org/10.1109/mwsym.2019.8701093

  • Wang, B., Blaize, S., Seok, J., Kim, S., Yang, H., Salas-Montiel, R.: Plasmonic-based subwavelength graphene-on-hBN modulator on silicon photonics. IEEE J. Sel. Top. Quantum Electron. 25(3), 4600706(1)–4600706(6) (2019a)

    Article  Google Scholar 

  • Wang, J., Yang, L., Hu, Z.-D., He, W., Zheng, G.: Analysis of graphene-based multilayer comb-like absorption system based on multiple waveguide theory. IEEE Photonic Technol. Lett. 31(7), 561–564 (2019b)

    Article  ADS  Google Scholar 

  • Xia, J., Chen, F., Li, J., Tao, N.: Measurement of the quantum capacitance of graphene. Nat. Nanotechnol. 4, 505–509 (2009). https://doi.org/10.1038/nnano.2009.177

    Article  ADS  Google Scholar 

  • Xu, R., Mei, Y., Xu, H., Yang, T., Ying, L., Zheng, Z., Long, H., Zhang, B., Liu, J.: Effects of lateral optical confinement in GaN VCSELs with double dielectric DBRs. IEEE Photonics J. 12(2), 1–8 (2020). https://doi.org/10.1109/JPHOT.2020.2979564

    Article  Google Scholar 

  • Ye, S.-W., Liang, D., Lu, R.-G., Shah, M., Zou, X.-H., Yang, F., Yuan, F., Liu, Y.: Polarization-independent modulator by partly tilted graphene-induced electro-absorption effect. IEEE Photonic Technol. Lett. 29(1), 23–26 (2017a)

    Article  ADS  Google Scholar 

  • Ye, S.-W., Yuan, F., Zou, X.-H., Shah, M., Lu, R.-G., Liu, Y.: High-speed optical phase modulator based on graphene-silicon waveguide. IEEE J. Sel. Top. Quantum Electron. 23(1), 3400105(1)–3400105(5) (2017b)

    Article  Google Scholar 

  • Zhou, Y., Huang, M., Chang-Hasnain, C.: Tunable VCSEL with ultra-thin high contrast grating for high-speed tuning. Opt. Express 16(18), 14221–14226 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar Qasaimeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qasaimeh, O. Ultrafast and wide tunable VCSEL using graphene passive cavity. Opt Quant Electron 52, 322 (2020). https://doi.org/10.1007/s11082-020-02438-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02438-x

Keywords

Navigation