Skip to main content
Log in

Solitary and traveling wave solutions for the Davey–Stewartson equation using the Jacobi elliptic function expansion method

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In our paper we modify the Jacobi elliptic function expansion method to obtain solutions to the Davey–Stewartson system of equations. Two categories of nonsingular solutions are obtained for both traveling and solitary waves and both with and without chirp. In both cases there is an arbitrary term in the mean flow field, meaning one can obtain solutions for arbitrary forms of the mean flow field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anker, D., Freeman, N.: On the soliton solutions of the Davey–Stewartson equation for long waves. Proc. R. Soc. Lond. 360, 1703–1740 (1978)

    MathSciNet  MATH  Google Scholar 

  • Belić, M., et al.: Analytical light bullet solutions to the generalized (3 + 1)-dimensional nonlinear Schrdinger equation. Phys. Rev. Lett. 101, 0123904 1–0123904 4 (2008)

    Article  ADS  Google Scholar 

  • Davey, A., Stewartson, K.: On three-dimensional packets of surface waves. Proc. R. Soc. Lond. 338, 101–110 (1974)

    ADS  MathSciNet  MATH  Google Scholar 

  • Deng, S., Qin, Z.: Darboux and Bäcklund transformations for the nonisospectral KP equation. Phys. Lett. A 357, 467–474 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  • Ebadi, G., Biswas, A.: The G′/G method and 1-soliton solution of the Davey–Stewartson equation. Math. Comput. Model. 53, 694–698 (2011)

    Article  MathSciNet  Google Scholar 

  • Eisenberg, S., et al.: Diffraction management. Phys. Rev. Lett. 85, 1863–1866 (2000)

    Article  ADS  Google Scholar 

  • Eiermann, B., et al.: Dispersion management for atomic matter waves. Phys. Rev. Lett. 91(060402), 1–4 (2003)

    Google Scholar 

  • Hieraninta, J.: Introduction to the Hirota Bilinear Method, vol. 95. Springer, Berlin (1997)

    Google Scholar 

  • Hieraninta, J., Hirota, R.: Multidromion solutions to the Davey–Stewartson equation. Phys. Lett. A 145, 237–244 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  • Huang, G., et al.: Davey–Stewartson description of two-dimensional nonlinear excitations in Bose–Einstein condensates. Phys. Rev. E 72(036621), 1–8 (2005)

    Google Scholar 

  • Jafari, H., et al.: The first integral method and traveling wave solutions to Davey–Stewartson equation. Nonlinear Anal. Model. Control 17, 182–193 (2012)

    Article  MathSciNet  Google Scholar 

  • Leblond, H.: Electromagnetic waves in ferromagnets: a Davey–Stewartson-type model. J. Phys A 32, 7907–7932 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  • Lou, S.: Dromions, dromion lattice, breathers and instantons of the Davey–Stewartson equation. Phys. Scr. 65, 7–112 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  • Lou, S., Lu, J.: Special solutions from the variable separation approach: the Davey–Stewartson equation. J. Phys. A 29, 4209–4215 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  • Newell, A., Moloney, J.: Nonlinear Optics. Addison-Wesley, Reading (1992)

    MATH  Google Scholar 

  • Ohta, Y., Yang, J.: Rogue waves in the Davey–Stewartson I equation. Phys. Rev. E 86(036604), 1–8 (2012)

    Google Scholar 

  • Ohta, Y., Yang, J.: Dynamics of rogue waves in the Davey–Stewartson II equation. J. Phys. A 46(105202), 1–19 (2013)

    MathSciNet  MATH  Google Scholar 

  • Petrović, N., et al.: Exact spatiotemporal wave and soliton solutions to the generalized (3 + 1)-dimensional Schrdinger equation for both normal and anomalous dispersion. Opt. Lett. 34, 1609–1611 (2009)

    Article  ADS  Google Scholar 

  • Petrović, N., et al.: Spatiotemporal wave and soliton solutions to the generalized (3 + 1)-dimensional Gross–Pitaevskii equation. Phys. Rev. E 81(016610), 1–5 (2010)

    Google Scholar 

  • Petrović, N., et al.: Analytical traveling-wave and solitary solutions to the generalized Gross–Pitaevskii equation with sinusoidal time-varying diffraction and potential. Phys. Rev. E 83(036609), 1–5 (2011)

    Google Scholar 

  • Petrović, N., et al.: Modulation stability analysis of exact multidimensional solutions to the generalized nonlinear Schrdinger equation and the Gross–Pitaevskii equation using a variational approach. Opt. Exp. 23, 10616–10630 (2015)

    Article  ADS  Google Scholar 

  • Sung, L.: An inverse scattering transform for the Davey–Stewartson-II equations, I. J. Math. Anal. Appl. 183, 121–154 (1994a)

    Article  MathSciNet  Google Scholar 

  • Sung, L.: An inverse scattering transform for the Davey–Stewartson-II equations, II. J. Math. Anal. Appl. 183, 289–325 (1994b)

    Article  MathSciNet  Google Scholar 

  • Sung, L.: An inverse scattering transform for the Davey–Stewartson-II equations, III. J. Math. Anal. Appl. 183, 477–494 (1994c)

    Article  MathSciNet  Google Scholar 

  • Sung, L.: Long-time decay of the solutions of the Davey–Stewartson II equations. J. Nonlinear Sci. 5, 433–452 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  • Tian, B., Gao, Y.: Solutions of a variable-coefficient Kadomtsev–Petviashvili equation via computer algebra. Appl. Math. Comput. 84, 125–130 (1997)

    MathSciNet  MATH  Google Scholar 

  • Wang, R., Huang, Y.: Exact solutions and excitations for the Davey–Stewartson equations with nonlinear and gain terms. Eur. Phys. J. D 57, 395–401 (2010)

    Article  ADS  Google Scholar 

  • Wazwaz, A.: The Hirotas bilinear method and the tanhcoth method for multiple-soliton solutions of the Sawada–Kotera–Kadomtsev–Petviashvili equation. Appl. Math. Comput. 200, 160–166 (2008)

    MathSciNet  MATH  Google Scholar 

  • Yan, Z.: Abundant families of Jacobi elliptic function solutions of the (2 + 1)-dimensional integrable Davey–Stewartson-type equation via a new method. Chaos Solitons Fractals 18, 299–309 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  • Yildirm, A., et al.: New exact traveling wave solutions for DS-I and DS-II equations. Nonlinear Analy. Model. Control 17, 369–378 (2012)

    Article  MathSciNet  Google Scholar 

  • Zakharov, V., Shabat, A.: A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I. Funct. Anal. Appl. 8, 226–235 (1974)

    Article  Google Scholar 

  • Zhong, W., et al.: Exact spatial soliton solutions of the two-dimensional generalized nonlinear Schrdinger equation with distributed coefficients. Phys. Rev. A 78(023821), 1–6 (2008)

    Google Scholar 

Download references

Acknowledgements

Work at the Institute of Physics is supported by project OI 171006 of the Serbian Ministry of Education and Science. Work in Qatar was done under the Qatar National Research Fund (QNRF) Project: NPRP 8-028-1-001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikola Zoran Petrović.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Advanced Photonics Meets Machine Learning.

Guest edited by Goran Gligoric, Jelena Radovanovic and Aleksandra Maluckov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrović, N.Z. Solitary and traveling wave solutions for the Davey–Stewartson equation using the Jacobi elliptic function expansion method. Opt Quant Electron 52, 319 (2020). https://doi.org/10.1007/s11082-020-02385-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02385-7

Keywords

Navigation