Skip to main content
Log in

Dirac fermions in asymmetric graphene in electromagnetic field

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

It is well-known that the asymmetry has dramatic effects on the properties of graphene. Therefore, here, a systematic study is presented to describe the effect of asymmetry on the Floquet oscillations in graphene. Even in the absence of external electromagnetic field, some kind of oscillations is predicted due to asymmetry. In pump-probe spectra, it is found that the amplitude of Floquet oscillations decreases in the presence of asymmetry in the graphene, however, the frequency of these oscillations increases. Moreover, the collapse and revival times are affected significantly due to asymmetry in graphene. The Bloch–Siegert shift is studied in the perspective of Floquet oscillation, called Floquet–Bloch–Siegert shift. A numerical simulation is performed to justify the role of asymmetry on Floquet oscillation in graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen, L., Eberly, J.: Optical Resonances and Two-Level Atoms. lnterscience Monographs and Texts in Physics and Astronomy, vol. 28. Wiley, New York (1975)

    Google Scholar 

  • Bloch, F., Siegert, A.: Magnetic resonance for nonrotating fields. Phys. Rev. 57(6), 522–527 (1940)

    Article  ADS  Google Scholar 

  • Breusing, M., Kuehn, S., Winzer, T., Malić, E., Milde, F., Severin, N., Rabe, J.P., Ropers, C., Knorr, A., Elsaesser, T.: Ultrafast nonequilibrium carrier dynamics in a single graphene layer. Phys. Rev. B 83(15), 153410 (2011)

    Article  ADS  Google Scholar 

  • Cummings, F.W.: Stimulated emission of radiation in a single mode. Phys. Rev. 140, A1051–A1056 (1965)

    Article  ADS  Google Scholar 

  • Dóra, B., Cayssol, J., Simon, F., Moessner, R.: Optically engineering the topological properties of a spin Hall insulator. Phys. Rev. Lett. 108(5), 056602 (2012)

    Article  ADS  Google Scholar 

  • Dung, H.T., Tanaś, R., Shumovsky, A.S.: Collapses, revivals, and phase properties of the field in Jaynes–Cummings type models. Opt. Commun. 79(6), 462–468 (1990)

    Article  ADS  Google Scholar 

  • Eberly, J.H., Narozhny, N.B., Sanchez-Mondragon, J.J.: Periodic spontaneous collapse and revival in a simple quantum model. Phys. Rev. Lett. 44(20), 1323–1326 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Enamullah, V., Kumar, U., Kumar, G.S.S.: Strain effect on the nonlinear electromagnetic response of 2D carbon based material. Adv. Sci. Lett. 20(7–8), 1459–1462 (2014a)

    Article  Google Scholar 

  • Enamullah, Kumar, V., Kumar, U., Kumar, G.S.S.: A theoretical study of pump-probe experiment in single-layer, bilayer and multilayer graphene. Pramana J. Phys. 82(6), 1085–1101 (2014b)

    Article  ADS  Google Scholar 

  • Enamullah, Kumar, V., Kumar, U., Setlur G.S.: Quantum Rabi oscillations in graphene. JOSA B 31(3), 484–493 (2014c)

    Article  ADS  Google Scholar 

  • Ficek, Z., Wahiddin, M.R.: Quantum Optics for Beginners. CRC Press, Boca Raton (2014)

    MATH  Google Scholar 

  • Fukuoka, S., Taen, T., Osada, T.: Electronic structure and the properties of phosphorene and few-layer black phosphorus. J. Phys. Soc. Jpn. 84(12), 121004 (2015)

    Article  ADS  Google Scholar 

  • Gric, T., Cada, M.: Analytic solution to field distribution in one-dimensional inhomogeneous media. Opt. Commun. 322, 183–187 (2014)

    Article  ADS  Google Scholar 

  • Han, M.Y., Özyilmaz, B., Zhang, Y., Kim, P.: Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98(20), 206805 (2007)

    Article  ADS  Google Scholar 

  • Haug, H., Koch, S.W.: Quantum Theory of the Optical and Electronic Properties of Semiconductors. World Scientific Publishing Co Inc, Hackensack (2009)

    Book  MATH  Google Scholar 

  • Inoue, J., Tanaka, A.: Photoinduced transition between conventional and topological insulators in two-dimensional electronic systems. Phys. Rev. Lett. 105, 017401 (2010)

    Article  ADS  Google Scholar 

  • Jafari, S.A.: Nonlinear optical response in gapped graphene. J. Phys. Condens. Matter 24(20), 205802 (2012)

    Article  ADS  Google Scholar 

  • Jaynes, E.T., Cummings, F.W.: Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE 51(1), 89–109 (1963)

    Article  Google Scholar 

  • Khan, E., Kumar, V., Setlur, G.S.: Crossover of coherent Rabi oscillations in graphene. Phys. B Condens. Matter 407(23), 4600–4609 (2012)

    Article  ADS  Google Scholar 

  • Kitagawa, T., Oka, T., Brataas, A., Fu, L., Demler, E.: Transport properties of nonequilibrium systems under the application of light: photoinduced quantum Hall insulators without Landau levels. Phys. Rev. B 84(23), 235108 (2011)

    Article  ADS  Google Scholar 

  • Kumar, V.: Relaxation dynamics of carriers in graphene. Adv. Sci. Lett. 24(8), 5666–5668 (2018)

    Article  Google Scholar 

  • Kumar, U.: Anisotropic Floquet optical spectra of Weyl semimetal. Mater. Res. Express 6(9), 096304 (2019a)

    Article  ADS  Google Scholar 

  • Kumar, U.: The effective role of Dirac mass in nonlinear optical spectra of silicene. JOSA B 36(5), 1222–1232 (2019b)

    Article  ADS  Google Scholar 

  • Kumar, V., Enamullah, Kumar, U., Setlur G.S.: Coherent non-linear optical response in SU (2) symmetry broken single and bilayer graphene. Phys. B Condens. Matter 436, 140–148 (2014a)

    Article  ADS  Google Scholar 

  • Kumar, U., Enamullah, Kumar, V., Setlur G.S.: Anomalous Bloch-Siegert effect in graphene. J. Nanosci. Lett. 4, 30 (2014b)

    Google Scholar 

  • Kumar, V., Enamullah, Kumar, U., Setlur G.S.: Coherent nonlinear electromagnetic response in twisted bilayer and few-layer graphene. Pramana J. Phys. 83(4), 597–617 (2014c)

    Article  ADS  Google Scholar 

  • Kumar, V., Enamullah, Kumar, U., Setlur G.S.: Band structure effects on the nonlinear optical response of bilayer graphene. Eur. Phys. J. B 87(3), 70 (2014d)

    Article  ADS  Google Scholar 

  • Kumar, U., Kumar, V., Enamullah, Setlur G.S.: Band-anisotropy induced Bloch–Siegert shift in graphene. JOSA B 31(12), 3042–3049 (2014e)

    Article  ADS  Google Scholar 

  • Kumar, U., Kumar, V., Enamullah, Setlur, G.S.: Signatures of bulk topology in the non-linear optical spectra of Dirac-Weyl materials. Eur. Phys. J. B 91(5), 86 (2018a)

    Article  ADS  MathSciNet  Google Scholar 

  • Kumar, U., Kumar, V., Enamullah, Setlur, G.S.: Bloch-Siegert shift in Dirac–Weyl fermionic systems. In: AIP Conference Proceedings, vol. 1942, p. 120005. AIP Publishing (2018b)

  • Kumar, U., Kumar, V., Enamullah, Setlur, G.S.: Quantum anomalous Bloch-Siegert shift in Weyl semimetal. In: AIP Conference Proceedings, vol. 1953, p. 030042. AIP Publishing (2018c)

  • Kumar, U., Kumar, V., Setlur, G.S., et al.: Quantized transient nonlinear Rabi frequency response in Weyl semimetals. Mater. Today Proc. 9, 422–427 (2019a)

    Article  Google Scholar 

  • Kumar, U., Kumar, V., Enamullah.: Anisotropic nonlinear optical response of phosphorene. Phys. E Low-dimens. Syst. Nanostruct. 108, 288–295 (2019b)

    Article  ADS  Google Scholar 

  • Lindberg, M., Koch, S.W.: Effective Bloch equations for semiconductors. Phys. Rev. B 38(5), 3342–3350 (1988)

    Article  ADS  Google Scholar 

  • Lindner, N.H., Refael, G., Galitski, V.: Floquet topological insulator in semiconductor quantum wells. Nat. Phys. 7(6), 490–495 (2011)

    Article  Google Scholar 

  • Mishra, K.A., Almas, Kumar U.: Band tuning of a phosphorene semiconductor via floquet theory. J. Electron. Mater. 48(12), 8193–8205 (2019)

    Article  ADS  Google Scholar 

  • Neto, A.H.C., Guinea, F., Peres, Nuno M.R., Novoselov, Kostya S., Geim, Andre K.: The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109–162 (2009)

    Article  ADS  Google Scholar 

  • Ni, Z.H., Yu, T., Lu, Y.H., Wang, Y.Y., Feng, Y.P., Shen, Z.X.: Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. ACS Nano 2(11), 2301–2305 (2008)

    Article  Google Scholar 

  • Oka, T., Aoki, H.: Photovoltaic Hall effect in graphene. Phys. Rev. B 79(8), 081406 (2009)

    Article  ADS  Google Scholar 

  • Rabi, I.I.: Space quantization in a gyrating magnetic field. Phys. Rev. 51(8), 652–654 (1937)

    Article  ADS  MATH  Google Scholar 

  • Sandonas, L.M., Cuba-Supanta, G., Gutierrez, R., Dianat, A., Landauro, C.V., Cuniberti, G.: Enhancement of thermal transport properties of asymmetric graphene/hBN nanoribbon heterojunctions by substrate engineering. Carbon 124, 642–650 (2017)

    Article  Google Scholar 

  • Schülzgen, A., Binder, R., Donovan, M.E., Lindberg, M., Wundke, K., Gibbs, H.M, Khitrova, G., Peyghambarian, N.: Direct observation of excitonic Rabi oscillations in semiconductors. Phys. Rev. Lett. 82(11), 2346–2349 (1999)

    Article  ADS  Google Scholar 

  • Sentef, M.A., Claassen, M., Kemper, A.F., Moritz, B., Oka, T.: JK Freericks, andTP Devereaux. Theory of Floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Commun. 6, 7047 (2015)

    Article  ADS  Google Scholar 

  • Shirley, J.H.: Solution of the Schrödinger equation with a Hamiltonian periodic in time. Phys. Rev. 138(4B), B979–B987 (1965)

    Article  ADS  Google Scholar 

  • Stenholm, S.: Saturation effects in RF spectroscopy. I. General theory. J. Phys. B Atomic Mol. Phys. 5(4), 878–889 (1972)

    Article  ADS  Google Scholar 

  • Vela-Arevalo, L.V., Fox, R.F.: Coherent states of the driven Rydberg atom: quantum-classical correspondence of periodically driven systems. Phys. Rev. A 71(6), 063403 (2005)

    Article  ADS  Google Scholar 

  • Wolfram Research, Inc. Mathematica, Mathematica, Version 11.1. Champaign, IL (2017)

  • Zhou, S.Y., Gweon, G.H., Fedorov, A.V., First, P.D., De Heer, W.A., Lee, D.H., Guinea, F., Neto, A.C., Lanzara, A.: Substrate-induced bandgap opening in epitaxial graphene. Nat. Mater. 6(10), 770–775 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vipin Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, K.A., Kumar, V. Dirac fermions in asymmetric graphene in electromagnetic field. Opt Quant Electron 52, 309 (2020). https://doi.org/10.1007/s11082-020-02374-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02374-w

Keywords

Navigation