Skip to main content
Log in

Mid-infrared gas sensor based on high-Q/V point-defect photonic crystal nanocavities

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Point-defect nanocavities based on silicon planar photonic crystal (PhC) have been optimized and studied for sensing the refractive index of gases in the mid-infrared wavelength region. The point-defect has been introduced at the center of the triangular lattice of the photonic crystal that is made up of circular air holes, making it suitable for probing the properties of the gas found within the cavity. By optimizing the radius and position of the air holes closest to the defect region precisely, on the order of a few nanometers, the ratio of the quality factor to mode volume (Q/V) for the point-defect PhC nanocavities can be increased considerably. Moreover, a perturbation method has been implemented in order to study the resonant wavelength shift of the optimized point-defect nanocavity modes caused by a small change in the refractive index of the gas. The results obtained show that sensitivity of 270 nm/RIU (Refractive Index Unit) and a detection limit of \(10^{-4}\) RIU can be achieved for the optimized point-defect PhC nanocavities. These nanocavities have been designed to oscillate at a single mode with a high Q/V thus enabling to sense the refractive index of gases with high sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akahane, Y., Asano, T., Song, B.S., Noda, S.: High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature 425(6961), 944–947 (2003)

    ADS  Google Scholar 

  • Chalcraft, A., Lam, S., O’Brien, D., Krauss, T., Sahin, M., Szymanski, D., Sanvitto, D., Oulton, R., Skolnick, M., Fox, A., et al.: Mode structure of the L 3 photonic crystal cavity. Appl. Phys. Lett. 90(24), 241117 (2007)

    ADS  Google Scholar 

  • Chang, Y., Dong, B., Ma, Y., Wei, J., Ren, Z., Lee, C.: Vernier effect-based tunable mid-infrared sensor using silicon-on-insulator cascaded rings. Opt. Express 28(5), 6251–6260 (2020)

    ADS  Google Scholar 

  • Chen, Y., Lin, H., Hu, J., Li, M.: Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing. ACS Nano 8(7), 6955–6961 (2014)

    Google Scholar 

  • Clerbaux, C., Hadji-Lazaro, J., Turquety, S., Mégie, G., Coheur, P.F.: Trace gas measurements from infrared satellite for chemistry and climate applications. Atmos. Chem. Phys. 3(5), 1495–1508 (2003)

    ADS  Google Scholar 

  • Dong, B., Guo, X., Ho, C.P., Li, B., Wang, H., Lee, C., Luo, X., Lo, G.Q.: Silicon-on-insulator waveguide devices for broadband mid-infrared photonics. IEEE Photonics J. 9(3), 1–10 (2017)

    Google Scholar 

  • Dong, B., Hu, T., Luo, X., Chang, Y., Guo, X., Wang, H., Kwong, D.L., Lo, G.Q., Lee, C.: Wavelength-flattened directional coupler based mid-infrared chemical sensor using bragg wavelength in subwavelength grating structure. Nanomaterials 8(11), 893–906 (2018)

    Google Scholar 

  • Dorfner, D., Hürlimann, T., Zabel, T., Frandsen, L.H., Abstreiter, G., Finley, J.: Silicon photonic crystal nanostructures for refractive index sensing. Appl. Phys. Lett. 93(18), 181103 (2008)

    ADS  Google Scholar 

  • Englert, C.R., Stevens, M.H., Brown, C.M., Harlander, J.M., DeMajistre, R., Marr, K.D.: High sensitivity trace gas sensor for planetary atmospheres: miniaturized Mars methane monitor. J. Appl. Remote Sens. 8(1), 083625 (2014)

    ADS  Google Scholar 

  • Ge, R., Xie, J., Yan, B., Liu, E., Tan, W., Liu, J.: Refractive index sensor with high sensitivity based on circular photonic crystal. JOSA A 35(6), 992–997 (2018)

    ADS  Google Scholar 

  • Hu, T., Dong, B., Luo, X., Liow, T.Y., Song, J., Lee, C., Lo, G.Q.: Silicon photonic platforms for mid-infrared applications. Photonics Res. 5(5), 417–430 (2017)

    Google Scholar 

  • Jágerská, J., Zhang, H., Diao, Z., Le Thomas, N., Houdré, R.: Refractive index sensing with an air-slot photonic crystal nanocavity. Opt. Lett. 35(15), 2523–2525 (2010)

    ADS  Google Scholar 

  • Joannopoulos, J., Johnson, S., Meade, R.: Photonic Crystals: Molding the Flow of Light. Princenton University Press, Cambridge (2007)

    MATH  Google Scholar 

  • Kang, C., Phare, C.T., Vlasov, Y.A., Assefa, S., Weiss, S.M.: Photonic crystal slab sensor with enhanced surface area. Opt. Express 18(26), 27930–27937 (2010)

    ADS  Google Scholar 

  • Kassa-Baghdouche, L.: Optical properties of a point-defect nanocavity-based elliptical-hole photonic crystal for mid-infrared liquid sensing. Phys. Scr. 95(1), 015502 (2019)

    ADS  Google Scholar 

  • Kassa-Baghdouche, L., Cassan, E.: High efficiency slotted photonic crystal waveguides for the determination of gases using mid-infrared spectroscopy. Instrum. Sci. Technol. 46(5), 534–544 (2018)

    Google Scholar 

  • Kassa-Baghdouche, L., Boumaza, T., Bouchemat, M.: Planar photonic crystal nanocavities with symmetric cladding layers for integrated optics. Opt. Eng. 53(12), 127107 (2014)

    ADS  Google Scholar 

  • Kassa-Baghdouche, L., Boumaza, T., Cassan, E., Bouchemat, M.: Enhancement of Q-factor in SiN-based planar photonic crystal L3 nanocavity for integrated photonics in the visible-wavelength range. Optik 126(22), 3467–3471 (2015)

    ADS  Google Scholar 

  • Kassa-Baghdouche, L., Boumaza, T., Bouchemat, M.: Optimization of q-factor in nonlinear planar photonic crystal nanocavity incorporating hybrid silicon/polymer material. Phys. Scr. 90(6), 065504–065511 (2015)

    ADS  Google Scholar 

  • Kassa-Baghdouche, L., Boumaza, T., Bouchemat, M.: Optical properties of point-defect nanocavity implemented in planar photonic crystal with various low refractive index cladding materials. Appl. Phys. B 121(3), 297–305 (2015)

    ADS  Google Scholar 

  • Kraeh, C., Martinez-Hurtado, J., Popescu, A., Hedler, H., Finley, J.J.: Slow light enhanced gas sensing in photonic crystals. Opt. Mater. 76, 106–110 (2018)

    ADS  Google Scholar 

  • Lai, W.C., Chakravarty, S., Wang, X., Lin, C., Chen, R.T.: On-chip methane sensing by near-IR absorption signatures in a photonic crystal slot waveguide. Opt. Lett. 36(6), 984–986 (2011)

    ADS  Google Scholar 

  • Lalanne, P., Sauvan, C., Hugonin, J.P.: Photon confinement in photonic crystal nanocavities. Laser Photonics Rev. 2(6), 514–526 (2008)

    ADS  Google Scholar 

  • Li, K., Li, J., Song, Y., Fang, G., Li, C., Feng, Z., Su, R., Zeng, B., Wang, X., Jin, C.: \(L\_\) \(n\) slot photonic crystal microcavity for refractive index gas sensing. IEEE Photonics J. 6(5), 1–9 (2014)

    Google Scholar 

  • Lin, H., Luo, Z., Gu, T., Kimerling, L.C., Wada, K., Agarwal, A., Hu, J.: Mid-infrared integrated photonics on silicon: a perspective. Nanophotonics 7(2), 393–420 (2017)

    Google Scholar 

  • Liu, Y., Salemink, H.: Photonic crystal-based all-optical on-chip sensor. Opt. Express 20(18), 19912–19920 (2012)

    ADS  Google Scholar 

  • Liu, Q., Tian, H., Yang, D., Zhou, J., Yang, Y., Ji, Y.: Nanoscale radius-graded photonic crystal sensor arrays using interlaced and symmetrical resonant cavities for biosensing. Sens. Actuators, A 216, 223–230 (2014)

    Google Scholar 

  • Mandelshtam, V.A., Taylor, H.S.: Harmonic inversion of time signals and its applications. J. Chem. Phys. 107(17), 6756–6769 (1997)

    ADS  Google Scholar 

  • Maza, D.C., Garcia, D.S., Deriziotis, I., Rodriguez, A., Llorca, J.: Macroporous silicon filters, a versatile platform for ndir spectroscopic gas sensing in the MIR. J. Electrochem. Soc. 166(12), B1010–B1015 (2019)

    Google Scholar 

  • Oskooi, A.F., Roundy, D., Ibanescu, M., Bermel, P., Joannopoulos, J.D., Johnson, S.G.: MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method. Comput. Phys. Commun. 181(3), 687–702 (2010)

    ADS  MATH  Google Scholar 

  • Qian, X., Zhao, Y., Zhang, Yn, Wang, Q.: Theoretical research of gas sensing method based on photonic crystal cavity and fiber loop ring-down technique. Sens. Actuators B: Chem. 228, 665–672 (2016)

    Google Scholar 

  • Rajasekar, R., Robinson, S.: Nano-electric field sensor based on two dimensional photonic crystal resonator. Opt. Mater. 85, 474–482 (2018)

    ADS  Google Scholar 

  • Rajasekar, R., Robinson, S.: Nano-pressure and temperature sensor based on hexagonal photonic crystal ring resonator. Plasmonics 14(1), 3–15 (2019)

    Google Scholar 

  • Siraji, A.A., Zhao, Y.: High-sensitivity and high-Q-factor glass photonic crystal cavity and its applications as sensors. Opt. Lett. 40(7), 1508–1511 (2015)

    ADS  Google Scholar 

  • Sünner, T., Stichel, T., Kwon, S.H., Schlereth, T., Höfling, S., Kamp, M., Forchel, A.: Photonic crystal cavity based gas sensor. Appl. Phys. Lett. 92(26), 261112 (2008)

    ADS  Google Scholar 

  • Vakili, M., Noori, M.: A highly accurate refractive index sensor with two operation modes based on photonic crystal ring resonator. Ann. Phys. 531(7), 1800453 (2019)

    Google Scholar 

  • Wang, X., Lv, J., E, S., Han, B., Zhang, Y.N.: Theoretical design and simulation optimization of photonic crystal cavity for tetrahydrofuran vapor sensing. physica status solidi (b) 256, 1900221 (2019)

    ADS  Google Scholar 

  • Yoshie, T., Scherer, A., Hendrickson, J., Khitrova, G., Gibbs, H., Rupper, G., Ell, C., Shchekin, O., Deppe, D.: Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432(7014), 200–203 (2004)

    ADS  Google Scholar 

  • Zhang, Y., Zhao, Y., Wang, Q.: Multi-component gas sensing based on slotted photonic crystal waveguide with liquid infiltration. Sens. Actuators B: Chem. 184, 179–188 (2013)

    Google Scholar 

  • Zhang, Y., Zhao, Y., Wang, Q.: Measurement of methane concentration with cryptophane E infiltrated photonic crystal microcavity. Sens. Actuators B: Chem. 209, 431–437 (2015)

    Google Scholar 

  • Zhao, Y., Zhang, Y., Lv, R., Li, J.: Electric field sensor based on photonic crystal cavity with liquid crystal infiltration. J. Lightwave Technol. 35(16), 3440–3446 (2017)

    ADS  Google Scholar 

  • Zhou, J., Huang, L., Fu, Z., Sun, F., Tian, H.: Multiplexed simultaneous high sensitivity sensors with high-order mode based on the integration of photonic crystal 1\(\times\) 3 beam splitter and three different single-slot PCNCs. Sensors 16(7), 1050 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lazhar Kassa-Baghdouche.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kassa-Baghdouche, L., Cassan, E. Mid-infrared gas sensor based on high-Q/V point-defect photonic crystal nanocavities. Opt Quant Electron 52, 260 (2020). https://doi.org/10.1007/s11082-020-02366-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02366-w

Keywords

Navigation