Skip to main content
Log in

Hybrid broadband optical modulator based on multi-layer graphene structure and silver nano-ribbons

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, a broadband optical modulator based on plasmonic hybrid structures has been investigated that shows good performance in the wavelength range of 1300 to 1800 nm. The proposed modulator consists of Multi-layer graphene with two silver nano-ribbons and an h-BN dielectric layer embedded between the graphene layers. The presence of silver nano-ribbons has created a waveguide in the mid-structure. Our results show that strong coupling of surface plasmon polaritons to this waveguide increases the light interaction with graphene, improves the subwavelength confinement, and ultimately enhances the modulation effects of this proposed modulator. The proposed modulator shows a modulation depth of 17.55 dB/μm with a loss of 1.47 dB/μm at wavelength of 1.55 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Cappellini, G., Satta, G., Palummo, M., Onida, G.: Optical properties of BN in cubic and layered hexagonal phases. Phys Rev B 64(3), 035104 (2001)

    Article  ADS  Google Scholar 

  • Chen, X., Wang, Y., Xiang, Y., Jiang, G., Wang, L., Bao, Q., Zhang, H., Liu, Y., Wen, S., Fan, D.: A broadband optical modulator based on a graphene hybrid plasmonic waveguide. J. Lightwave Technol. 34(21), 4948–4953 (2016)

    Article  ADS  Google Scholar 

  • Correas-Serrano, D., Gomez-Diaz, J.S., Sounas, D.L., Hadad, Y., Alvarez-Melcon, A., Alù, A.: Nonreciprocal graphene devices and antennas based on spatiotemporal modulation. IEEE Antennas Wirel. Propag. Lett. 15, 1529–1532 (2015)

    Article  ADS  Google Scholar 

  • Dalir, H., Xia, Y., Wang, Y., Zhang, X.: Athermal broadband graphene optical modulator with 35 GHz speed. Acs Photonics 3(9), 1564–1568 (2016)

    Article  Google Scholar 

  • Du, X., Skachko, I., Barker, A., Andrei, E.Y.: Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 3(8), 491 (2008)

    Article  ADS  Google Scholar 

  • Farmani, A., Miri, M., Sheikhi, M.H.: Design of a high extinction ratio tunable graphene on white graphene polarizer. IEEE Photonics Technol Lett 30(2), 153–156 (2017a)

    Article  ADS  Google Scholar 

  • Farmani, A., Yavarian, M., Alighanbari, A., Miri, M., Sheikhi, M.H.: Tunable graphene plasmonic Y-branch switch in the terahertz region using hexagonal boron nitride with electric and magnetic biasing. Appl. Opt. 56(32), 8931–8940 (2017b)

    Article  ADS  Google Scholar 

  • Gusynin, V.P., Sharapov, S.G., Carbotte, J.P.: Magneto-optical conductivity in graphene. J. Phys.: Condens. Matter 19(2), 026222 (2006)

    ADS  Google Scholar 

  • Hao, R., Jiao, J., Peng, X., Zhen, Z., Dagarbek, R., Zou, Y., Li, E.: Experimental demonstration of a graphene-based hybrid plasmonic modulator. Opt. Lett. 44(10), 2586–2589 (2019)

    Article  ADS  Google Scholar 

  • He, J., Tao, L., Zhang, H., Zhou, B., Li, J.: Emerging 2D materials beyond graphene for ultrashort pulse generation in fiber lasers. Nanoscale 11(6), 2577–2593 (2019)

    Article  Google Scholar 

  • Kim, J.T.: Silicon optical modulators based on tunable plasmonic directional couplers. IEEE J. Sel. Top. Quantum Electron. 21(4), 184–191 (2014)

    ADS  Google Scholar 

  • Kim, Y., Kwon, M.-S.: Electroabsorption modulator based on inverted-rib-type silicon waveguide including double graphene layers. J. Opt. 19(4), 045804 (2017)

    Article  ADS  Google Scholar 

  • Kovacevic, G., Yamashita, S.: Design optimizations for a high-speed two-layer graphene optical modulator on silicon. IEICE Electr Expr 13(14), 20160499–20160499 (2016)

    Article  Google Scholar 

  • Liao, L., Lin, Y.-C., Bao, M., Cheng, R., Bai, J., Liu, Y., Yongquan, Qu, Wang, K.L., Huang, Yu, Duan, X.: High-speed graphene transistors with a self-aligned nanowire gate. Nature 467(7313), 305 (2010)

    Article  ADS  Google Scholar 

  • Liu, M., Yin, X., Zhang, X.: Double-layer graphene optical modulator. Nano Lett. 12(3), 1482–1485 (2012)

    Article  ADS  Google Scholar 

  • Lu, L., Wang, W., Leiming, W., Jiang, X., Xiang, Y., Li, J., Fan, D., Zhang, H.: All-optical switching of two continuous waves in few layer bismuthene based on spatial cross-phase modulation. Acs Photonics 4(11), 2852–2861 (2017)

    Article  Google Scholar 

  • Lu, Z., Zhao, W.: Nanoscale electro-optic modulators based on graphene-slot waveguides. JOSA B 29(6), 1490–1496 (2012)

    Article  ADS  Google Scholar 

  • Luan, J., Zheng, P., Yang, H., Guohua, Hu, Zhang, R., Yun, B., Cui, Y.: A compact graphene modulator based on localized surface plasmon resonance with a chain of metal disks. Plasmonics 14(6), 1949–1954 (2019)

    Article  Google Scholar 

  • Novoselov, K.S., Geim, A.K., Morozov, SV., Jiang, D., Zhang, Y., Dubonos, SV., Grigorieva, IV., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306(5696), 666-669 (2004)

    Article  ADS  Google Scholar 

  • Novoselov, K.S., Geim, A.K., Morozov, SVb, Jiang, D., Katsnelson, M.I., Grigorieva, IVa, Dubonos, SVb, Firsov, A.A.: Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065), 197 (2005)

    Article  ADS  Google Scholar 

  • Qin, C., Wang, B., Long, H., Wang, K., Peixiang, Lu: Nonreciprocal phase shift and mode modulation in dynamic graphene waveguides. J. Lightwave Technol. 34(16), 3877–3883 (2016)

    Google Scholar 

  • Rezaei, M. H., Boroumandi, R., Zarifkar, A., Farmani A.: Nano-scale multifunctional logic gate based on graphene/hexagonal boron nitride plasmonic waveguides. IET Optoelectron (2019).

  • Shah, M.K., Ye, S.-W., Zou, X.-H., Yuan, F., Jha, A., Zhang, A., Lu, R.-G., Liu, Y.: Graphene-assisted electroabsorption optical modulator using D-microfiber. IEEE J. Select Topics Quantum Electron 23(1), 89–93 (2016)

    Article  ADS  Google Scholar 

  • Vahed, H., Ahmadi, S.S.: Graphene-based plasmonic electro-optic modulator with sub-wavelength thickness and improved modulation depth. Appl Phys B 123(11), 265 (2017)

    Article  ADS  Google Scholar 

  • Vahed, H., Ahmadi, S.S.: Hybrid plasmonic optical modulator based on multi-layer graphene. Opt Quantum Electron 52(1), 1–11 (2020)

    Article  Google Scholar 

  • Vogel, D., Krüger, P., Pollmann, J.: Structural and electronic properties of group-III nitrides. Physl Rev B 55(19), 12836–12839 (1997)

    Article  ADS  Google Scholar 

  • Wang, J., Ma, F., Sun, M.: Graphene, hexagonal boron nitride, and their heterostructures: properties and applications. RSC Adv 7(27), 16801–16822 (2017)

    Article  Google Scholar 

  • Ye, L., Sui, K., Zhang, Y., Liu, Q.H.: Broadband optical waveguide modulators based on strongly coupled hybrid graphene and metal nanoribbons for near-infrared applications. Nanoscale 11(7), 3229–3239 (2019)

    Article  Google Scholar 

  • Zhu, Y., Deng, C., Huang, L., Guohua, Hu, Yun, B., Zhang, R., Cui, Y.: Hybrid plasmonic graphene modulator with buried silicon waveguide. Opt Commun 456, 124559 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Vahed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimkhani, H., Vahed, H. Hybrid broadband optical modulator based on multi-layer graphene structure and silver nano-ribbons. Opt Quant Electron 52, 229 (2020). https://doi.org/10.1007/s11082-020-02354-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02354-0

Keywords

Navigation